
Robust A�ne Flow Estimationwith Controlled Computation CostEtienne Grossmann? Jos�e Santos-VictorInstituto de Sistemas e Rob�otica,Instituto Superior T�ecnicoTorre Norte - Piso 7 - Av. Rovisco Pais, 1P 1096 Lisboa Codex - PORTUGALfetienne,jasvg@isr.ist.utl.ptAbstract. This paper addresses a classical problem -optical 
ow- for which we propose novel estimation algorithmsbased on robust regression. Another important aspect of our work is that we are concerned with the computationale�ciency of our estimators, in the sense of maximizing its performance, for a chosen computation cost. This concernabout e�cient estimation appears often in active vision. It poses a much harder problem than estimation alone, andthere seem to be very few theoretical results. After discussing the issue of performance assessment, we present apractical method for comparing the performance of di�erent estimators, and the results obtained when comparingour algorithms with a more classical one.1 IntroductionIn vision applications, one often has an estimation problem as a subgoal ( motion estimation, localization,etc). Satisfactory solutions for these problems can often be computed o�-line but there is the need to knowhow well a solution can be obtained in a fast procedure. Achieving the desired velocity is usually soughtthrough the amelioration of hardware and/or software.Both approaches are rewarding : The �rst has greatly bene�ted of the technological improvements broughtby the ever-spreading use of computers, and of constant research in the relevant �elds; the second being mostlydriven by research in vision, resulting in improved or altogether new algorithms.We are mainly concerned by the algorithmic part, and more speci�cally, by the trade-o� between theprecision of an estimator and the computational cost at which it can be implemented. From that point ofview, estimation problems have not bene�ted of breakthroughs like other domains (like multigrid methodsfor numerical partial di�erential equations) have. The methods of estimation theory were greatly developedin statistics, where not loosing information from the sample it is more important than sparing computingresource.Despite its importance for obvious practical reasons, this trade-o� is a question rarely encountered inliterature, and we have very few analytical tools to help us. There are two main contributions in this paper.The �rst one regards a general discussion of performance analysis and characterization of vision algorithmswhich only recently has captured the attention of researchers. The second contribution is a novel algorithmfor computing the a�ne optic 
ow. It is based on a modi�ed robust regression algorithm, and is most closelyrelated to so-called \di�erential" 
ow-computing techniques; yet we show in Section 3.5 that it can be linkedto \region-based matching" methods. Experiments indicate improvements over more traditional techniques.We compare the results of di�erent a�ne estimators when all are given the same computational resource,and we discuss how being able to build estimators of a given computational cost can help in maximizingthe e�ciency. An interesting study of how the performance of optic 
ow estimators varies with the availablecomputational resource is given in in [8]. As opposed to that paper, we do not consider procedures thatcompute the optic 
ow in every pixel, but the a�ne 
ow (the 
ow and its �rst derivatives).After a brief introduction to optic 
ow, in Section 2, we present our approach in Section 3, detailingthe points where it di�ers from other methods. In Section 4, we discuss the various criteria to assess thequality of an estimator, and their limitations. Section 5 is devoted to the experimental results and establishesdirections of future work.? This work is partially funded by the HCM-European Robotics Network (ERNET), and by a previous fellowship fromthe European Commission Human Capital Mobility (HCM) Programme. Thanks to the reviewers for suggestions.Special thanks to C�esar Silva for his help in troubleshooting.



2 Optical FlowThe de�nition of the optical 
ow is well known (see [5]), and it is widely accepted that the optic 
owestimation is an ill-posed problem. A review of di�erent approaches for optic 
ow estimation can be foundin [1]. The optical 
ow is a vector �eld (u; v) de�ned over an image sequence I2, such that for every point(x; y) in the image, at any time instant t, the following equation is ful�lled :D(u;v;1)I = 0 (1)where D(u;v;1)I is the directional derivative of I in the direction (u; v; 1). This means that along the lines ofthe 3D vector �eld (u; v; 1), the brightness is constant.In computer vision literature, Equation (1) is most often expressed as :Ixu+ Iyv + It = 0; (2)where Ix; Iy and It are the partial derivatives of the image sequence. If we consider the image as havingcontinuous support, both de�nitions are equivalent. Using discrete images changes the situation. It is widelyrecognized that the model for the optical 
ow is only approximately valid. These two points will be addressedin Sections 3.1 and 2.2.We consider the optical 
ow as the projection of the 3D motion in the watched scene onto the imageplane. As such, it is a rich source of information about structure and motion.This has been studied in papersby Koenderinck and Doorn,in [7], Longuet-Higgins and Pradzny in [9], or more extensively in Subbarao'sbook [11]. For example, knowledge |in a single pixel| of the 
ow and its derivatives gives informationabout both the relative motion of the camera and the surface \seen" in that pixel, and the orientation ofthat surface. A highly accurate estimate of the 
ow is, of course, preferable.2.1 A�ne Optical Flow When observing a 
at surface, the optic 
ow at the center of the imagecan be expressed as a degree-2 polynomial of the image coordinates, and one can show that the amplitudeof the constant and linear terms is somewhat greater than that of the others. In many cases [10], we canapproximate the 
ow by an a�ne model, which is easier to estimate, and su�cient for many active-visionapplications.We will consider this simpli�ed model and study the e�ect of the approximation. The a�ne 
ow modelresults from a �rst-order expansion of the 
ow (u(x; y; t); v(x; y; t)) around a point (x0; y0), with 
ow (u0; v0).The a�ne 
ow model can then be expressed as :�u(x; y; t)v(x; y; t) � = �u0v0 � + �ux uyvx vy � �x� x0y � y0 � (3)The purpose of the system we present here is to compute the parameters � = [u0; ux; uy; v0; vx; vy]T whenthe point (x0; y0) is the center of the image, (0; 0). The generalization to any other point is trivial.2.2 Error Modeling Since we use a simpli�ed 
ow model, we have to consider the various sources ofuncertainty (noise), which can be identi�ed as :e1 Non exactness in Equation (1) which de�nes an ill-posed mathematical problem. It can be violated inthe presence of occlusion, shading and other optical e�ects.e2 Non exactness in the a�ne approximation Equation (3). It depends on the optical properties and dy-namics of the scene, lacks a good statistical modeling, and is likely to produce non-independent noiseterms.e3 Error in the estimation of the image values, due to imperfection of the sensor and discretization. Despiteits fundamental aspect, and the great development of �ltering techniques, this noise is poorly character-ized. Often, it is considered to be independent and/or Gaussian, both assumptions being more convenientthan realistic.Even if in practice, these noise terms are hard to characterize separately, we succeeded in gaining someinsight on the characterization of the sum of all the terms. Figure 1 shows that the noise cannot be assumedto follow a Gaussian distribution, or even a \slightly contaminated" Gaussian.2 An image sequence is a function taking as arguments a point (pixel) in the image plane p (also written (x;y)), anda time instant t. (u(p; t); v(p; t)) is then a \vector in the 2D image plane", or, similarly, (u; v; 1) is a \vector in the3D support of the image sequence" (we often omit the arguments (p; t)) for brevity.



b −10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

 Grey Levels 

 P
ro

ba
bi

lit
y 

D
en

si
ty

 
 Directional  Derivatives in Flow Direction (Real Sequences) Fig. 1.: Histogram of the residues in Equation (1), usingthe a�ne 
ow approximation, computed from real images.The unknown 
ow parameters are replaced by a good es-timate (computed o�-line, allowing big computation re-source). The tails are important : The variance is 39. Thishistogram was produced using 34000 measures and 500bins. The residue is the sum of the noise terms (e1 ), (e2)and (e3), and a term due to the error in the estimate.3 The Proposed ApproachThis section addresses the estimation of the a�ne optic 
ow. We �rst de�ne the optic 
ow when discreteimages are used.3.1 Discrete Model for the Optical Flow : Since it is one of the core aspects in our work, we mustexplain how to transpose the de�nition of optic 
ow to discrete sequences of images. We further assume that,x; y; t are integer numbers, and I has discrete support. Then, Equation (1) can be transformed into :I(x; y; t) = I(x+ u; y + v; t+ 1) (4)in any point and at any time instant. Equivalently, we can write the relation :D�(u;v;1)I = 0;where D�(u;v;1)I(x; y; t) = I(x+ u; y + v; t+ 1)� I(x; y; t) (5)We de�ne the partial derivatives Ix and Iy, with the symmetric di�erence scheme, and It with the backwarddi�erence scheme : Ix(x; y; t) = [I(x + 1; y; t)� I(x� 1; y; t)]=2Iy(x; y; t) = [I(x; y + 1; t)� I(x; y � 1; t)]=2It(x; y; t) = [I(x; y; t + 1)� I(x; y; t)]A �rst-order approximation of I(x+ u; y+ v; t+1) in a neighborhood of I(x+ ~u; y+ ~v; t+1) , for any (x; y)and (~u; ~v) can be written as :I(x + u; y + v; t+ 1) = I(x + ~u; y + ~v; t+ 1) + [Ix; Iy] [u� ~u; v � ~v]T + h(u� ~u; v � ~v); (6)where h is the \error" in the approximation.3.2 Observation equation : The problem now is to derive an observation equation depending on theunknown 
ow values (u; v), by using Equation (4) and keeping the error as small as possible. For a chosenvector (~u; ~v), we may write for any point (x; y), the following equations, by using (5) and (6) :� D�(~u;~v;1)I(x; y; t) + [Ix; Iy] [~u; ~v]T � h(u� ~u; v � ~v) = [Ix; Iy] [u; v]T (7)where, apart from the error term h(u�~u; v�~v), all the remaining terms in the left hand side can be computedfrom image data.The choice of (~u; ~v), is then an important decision since it determines the magnitude of the approximationerror. We have studied two possibilities.



{ \Anisotropic" approach : If (u; v) is a random-variable with known expectancy (û; v̂), we can choose(~u; ~v) = (û; v̂) _This choice minimizes |under certain conditions| the error in the observation equation.The (noiseless) observation equation is then :� D�(û;v̂;1)I(x; y; t) + [Ix; Iy] [û; v̂]T = [Ix; Iy] [u; v]T (8){ \Isotropic" approach : The most frequently encountered choice is (~u; ~v) = (0; 0). The (noiseless)observation equation is appealingly similar to Equation (2) :� It = [Ix; Iy] [u; v]T = Ixu+ Iyv; (9)The \anisotropic" method minimizes the expectation of jh(u � ~u; v � ~v)j, if the following assumptions areveri�ed :(a) The random variables \u knowing v", and \v knowing u" are integer-valued, unimodal, with modes û,and v̂;(b) Equation (4) is exact;(c) The functions Ejh(:; v)j and Ejh(u; :)j 3 have their minimum in 0 (for all v and u).Assumption (a) states that one already has an unbiased estimate of the 
ow, which is the case, and that(u; v) is \well-behaved". Assumption (c) formulates a property of the input images which is easily validatedexperimentally. Although we have not formally extended this result when u and v take non-integer values,we believe that the rounded values of û and v̂ are a good choice.When using the \anisotropic" observation equations, the locations in which the observations are done\follow" the optical 
ow; i.e. at each frame, they are displaced by the current estimate of the (local) 
ow.This, in conjunction with the use of autoregression time-smoothing, further justi�es the term \anisotropic";the term \steerable" is used with a somewhat similar meaning to qualify spatial image �lters that can beoriented according to the image gradient [2].3.3 Solving for the A�ne Flow Parameters Here we discuss how to solve for the six parametersthat de�ne the a�ne 
ow. We have a sequence of images, and will successively estimate the value of theparameters at all instants. The goal is then to use observations of the new image to obtain a an improvedestimate. If we make our observation using the \Anisotropic" approach, together with the a�ne 
ow modelEquation (3), we get : � D�(û;v̂;1)I + [Ix Iy] [û v̂]T = [Ix xIx yIx Iy xIy yIy ] � (10)Similarly, using \Isotropic" measurements, one obtains the more commonly seen equation� It = [Ix; xIx; yIx; Iy; xIy; yIy ]� (11)A natural choice for estimating the parameters of the a�ne 
ow, would be a maximum-likelihood approach.However, it would require the characterization of each noise term separately, which is di�cult in practice.Additionally, it would lead us to a non-linear minimization problem. We plan to address the problem infuture work.3.4 Robust Regression Estimation Here, we have simpli�ed the problem by summing up all the noiseterms into a single random variable. We are then faced with a linear regression problem in which the left handsides of Equations (10) or (11) are the observed values. Since the noise term does not appear to be Gaussian,we opted for robust regression estimators (which are not necessarily maximum-likelihood). Robust regressiontechniques are suitable when the error follows a slightly contaminated Gaussian distribution. Figure 1 showsthat the contaminant may be greater than that. Nevertheless, we used robust regression because it appearedto give reasonably good results, and we assume that the resulting estimates are unbiased.The robust estimate of the 
ow parameters, is computed iteratively, through a sequence of estimateswhich -hopefully- converges to the solution, as shown in Figure 2. We implemented the estimators in twoways : One follow closely the suggestions in [6], and is illustrated on the left side of Figure 2. The second3 The expectation is taken over all x; y and images I.



includes an extra step inserted between iterations : We re-compute the left hand side of Equation (10) withour latest estimate, (û; v̂) (right hand side of Equation 2). According to what we saw in Section 3.1, thisshould reduce the variance of the noise in the observation. However, doing the extra observations increasesthe computational cost, and we must decide whether it is worthwhile. The choice is not trivial, as mentionedin the next section.All together, we now have three di�erent ways of estimating the 
ow :{ \Anisotropic" approach, making observations only once per image. (Classic robust estimator).{ \Anisotropic-M" approach, making observations at each iteration of the (Modi�ed) robust estimator.{ \Isotropic" approach. Classic robust estimator with observations made with the \isotropic" method.
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Fig. 2.: Block Diagram of the Robust Estimators : The left diagram corresponds to making one observationper image. In the right diagram, the observations are replaced at each iteration.3.5 Robust Region-Based Image MatchingA point worth mentioning is that using the \anisotropic" method can be seen to be equivalent to �ndingthe a�ne deformation4 of the image plane that \best �ts" the image sequence. The so-called \region-basedmatching techniques" de�ne the optic 
ow as the vector �eld that minimizes the di�erence between theimage at a given \time-instant", transformed by the vector �eld, and the image at the next time-instant.The di�erence measure is usually, either the correlation, or the \sum of squared di�erences" (SSD) de�nedby :SSD = kI(x; y; t)� I(x + u; y + v; t+ 1)k2. In our case, a \robust" version of the SSD is minimized.There are di�erent variants of robust regression [6], the choice of which, determines the cost functionminimized by the estimate. This function may be, for example :{ P(x;y) �Deform�I(x; y; t) � I(x; y; t + 1)�2, where Deform�I(x; y; t), is the image deformed by the a�ne
ow �eld �. This choice corresponds to classical regression, and yields the usual SSD.{ P(x;y) � �( �Deform�I(x; y; t)� I(x; y; t+ 1)� =� ), when one uses the so-called \Huber" regressionestimator. �(r) = a+ r2=2 if jrj < 1, and �(r) = jrj+ a� 1=2 otherwise; a > 0, and � is an appropriatelychosen robust equivalent of the variance.{ P(x;y) � �( �Deform�I(x; y; t) � I(x; y; t + 1)� =� ), where �(r) = log(1 + r2), when one uses a robustestimator adapted to \Cauchy"-distributed noise. This is the robust estimator we used in the tests below.4 Two images I1 and I2 are said to be a�ne transformations one of another if there are parameters(u0; ux; uy; v0; vx; vy) such that I1(x+ u; y + v) = I2(x;y), where u; v are de�ned as in Equation (3)



4 Performance analysisAn important choice is the criterion for the quality of an estimator : It must be meaningful for whoever plansto use the output of the estimator and yet it must facilitate theoretical analysis so as to provide guidelinesto the designer of the estimator.One possible choice is to take the variance as the quality criterion. Then, quality will be dependent onstatistics of the input which are rarely known (in our case, the characteristics of the noise terms e1, e2 ande3). Often, simulation substitutes the analytic study, making the the assumption that the synthetic data is\representative enough" of real-world situations.Another possibility is to consider that our system is to be embedded in a larger system, whose performanceis easier to evaluate (like a robotic system with a precisely de�ned goal). Then, the performance analysis canbe done relative to this larger system, hence allowing the comparison of di�erent estimators. However, theperformance assessment is complicated (and costlier), since in order to test the estimator, one has to test agreater system. This method is usually reserved to �nal development tests.Few options are left between these two extremes, and this is certainly a research issue deserving attention.For a general discussion on performance analysis in computer vision, see [4].When choosing a criterion on the quality of an estimator, one usually starts by addressing the qualityof an estimate. As often in computer vision, this choice is di�cult because of the non-rigorous de�nition ofthe desired output, and many quality measures can be encountered in the literature.As a measure of quality of an estimate, when ground truth is known, we use the squared norm of theerror. The norm we used re
ects the di�erence in magnitude of the components of the estimates. We usedthe empirical expectancy of this measure to assess the quality of an estimator 5. This quality measure waspartly extended in [3] to the case when no ground truth is available.The computational cost of the implementation of an estimator is often a crucial consideration, for examplein active vision. Thus, being able to characterize the performance in terms of computational cost (or thecontrary) appears a central issue. Unfortunately, we are not aware of analytic results on that subject6.The concept of \computational cost" deserves some attention, as it has no universal de�nition. Complexityseems natural, but there are many variants (worst-case, mean). It may depend not only on the algorithm,but also on the machine running it (it may be parallelizable), and the way complexity translates intoexecution time is non-trivial. Our criterion is the \empirical mean cpu-time" for our machine. This hasmany disadvantages : Dependency on the e�ciency of the code, and limited control.By appropriately choosing the number of observations used by an estimator, we may specify the cpu-timeof its implementation. A study of the algorithm allowed us to identify a model for the execution time, asa function of di�erent parameters in the estimator. Based on this model, we can determine the numberof observations needed to achieve the desired computation time, when all other parameters are �xed. Thismethod is rather crude, and we believe new software tools would be welcome, along with a better adaptedconcept of complexity.However, it allowed us to experimentally observe the e�ect of the tuning parameters on the performance,while keeping its computational cost �xed.5 Results and DiscussionAs discussed before, we can consider three families of estimators : \Isotropic", \Anisotropic" and \Anisotropic-M". The computation cost of all the compared estimators is the same. Within each family, the estimatorsdi�er by the number of iterations performed in the robust regression. Accordingly, an estimator that performsa larger number of iterations takes a smaller number of observations.All the results in this section were obtained with synthetically deformed images (Figure 3 shows oneof them), and therefore, the ground truth 
ow is known. We used two methods to generate sequences of
ow parameters (and from these, the image sequences). We could either simulate the motion of a camera5 These two choices may be criticized : Once an estimate is all the way wrong, we do not care if it is ten timesmore so (we have a \minimax" error measure in mind). However, the error measure (squared norm) will keep onincreasing quadratically. The empirical mean of errors is non-robust : A single wrong estimate yield a high errormeasure of an otherwise \good" estimator.6 An exception is when, in a regression problem, the noise is Gaussian; otherwise, we may have asymptotic results,which are less useful; or no result other than experimental evidence.



observing a tilted 
at surface, or use randomly generated autoregressive time-series (six appropriately scaledtime series specify the six 
ow parameters). The CPU time is �xed to 0.3 seconds, on a DEC ALPHA3000-500, using the \cc" compiler, with debugging option and no optimization. The number of observationsis shown in Table 1. Method Min Max Min:errorIsotropic 1203 1539 -Anisotropic�M 997 1529 1424Anisotropic 1127 1415 -Table 1.: Number of observations (minimum and maximum) used for the various estimators. For theAnisotropic we also have the number of observations corresponding to the minimum error estimator.Figure 4 plots the empirical expectancy of the squared error of the three families of estimators, \Isotropic"(solid line), \Anisotropic" (circles) and \Anisotropic-M" (pluses). The number of iterations of the estimatoris in abscissa (not counting the initial estimate : 0 corresponds to the (initial) least-squares solution, 1indicates that the robust estimator has been iterated once, etc).
Fig. 3.: One of the used images, taken from a syn-thetically produced sequence. We used 
ow valuescorresponding to either the motion of a cameraobserving a tilted 
at surface, or random (AR(1))time-series of appropriate amplitude. 0 1 2 3 4 5 6 7
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Fig. 4.: Empirical squared error of the estimator vs.number of iterations, for \Isotropic"(plain curve),\Anisotropic"(o) and \Anisotropic-M"(+) methods(All other conditions are equal).Figure 4 show the e�ectiveness of the anisotropic approach when observations are renewed at each iter-ation of the estimator (\Anisotropic" curve). The 
at curves of the \Anisotropic-M" and \Isotropic" seemto indicate that for a given computation cost, the performance of these methods does not vary with extraiterations. Other experiments with these estimators show that the performance stays nearly constant whenone varies only the number of iterations (and the number of observations is �xed), and that performancealso remains nearly constant when the number of observations is varied like here, between 1000 and 1500.Di�erences in the implementations of the \Anisotropic" and \Isotropic" methods explain that the numberof observations di�ers when the number of iterations is zero, i.e., when all the methods compute the samesolution (namely, the least-squares, from which the robust estimators are started). The di�erence in thenumber of observations of the \anisotropic" and \anisotropic-M" estimators, for 0 iterations illustratesimprecision in the time-cost setting procedure.The use of other sequences has led to di�erent results, depending greatly on the amplitude of theoptic 
ow; however, the general tendency is that of the above data, except that the performance of the\Anisotropic" method is often better than here.



Other choices concerning algorithms (.e.g. variants of robust regression algorithms) and parameters (e.g.smoothing coe�cients) were settled by this kind of comparison.Our approach has several limitations :{ The number of coe�cients one has to tune ( for example, we still have other ways of iterating a robustestimator, we should set �lter widths, perform outlier rejection, etc... ) makes the exploration of theire�ect on performance a lengthy process. In practice, it takes time and experimentation to optimizean estimator, for a given time-cost. An automated procedure would be welcome, but it would be verytime-costly (computationally); unless new theoretic tools help us improve its e�ciency.{ Being able to compare algorithms and parameter setups on speci�c data does not give us much insighton the reasons of their performance.An interesting study of \performance versus time-cost" appeared recently in [8]. In our case, this isequivalent to \performance versus number of estimates" (when all other parameters are �xed). In turn, onecan show theoretically [6] |and observe in practice| that the error is inversely proportional to the numberof observations. Still more interesting would be a study of \performance versus time-cost" when for eachgiven time-cost value, all the parameters are set to optimize performance (instead of being �xed). This couldbe an application for an automated tuning procedure.Future work should aim at a better characterization input data, as it often guides the analytic study ofthe problem : For example, once one has noticed that the error term h(u; v) in Equation (6), veri�es the (c)assumption in Section 3.2, the \anisotropic" algorithm naturally follows. Similarly, a statistical characteri-zation of the validity of the de�nition of optic the 
ow (Equation (1)) in the design of 
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