CS275 RECITATION EXERCISES

For each question, read **each word** with the greatest care and **without hurrying**. If you have doubts about what is asked, **go back** to the wording of the question until the meaning of the question is clear. Then try to find an answer.

Be careful with notations and words:

 $f: R \longrightarrow \mathbb{N}$ reads

"f is a function mapping R into \mathbb{N} " or

"f is a function from R to \mathbb{N} " or

"f maps R into \mathbb{N} ."

 $f: x \in R \longrightarrow \lfloor x \rfloor \in \mathbb{Z}$ reads

"f maps any real number x to the integer "floor x"" or

"f is the function that associates "floor x" to a real number x. (in addition, its codomain is \mathbb{Z})."

 $[a, b] = [a, b) = \{x \in R \mid a \le x < b\}$ reads

"the interval a, b, closed on one side and open on the other."

Exercise 1. Let f be the function.

$$f: x \in]0, +\infty[\longrightarrow 2\log(x) \in R$$

a) What are the domain and co-domain of f?

Solution: Domain: $]0, +\infty[$. Co-domain: R.

b) Write in mathematical notation the range of f.

Solution:

$$f([0, +\infty[) = \{f(x) \mid x \in R\} = \{y \in R \mid \exists x \in R, f(x) = y\}$$

c) Find three elements in the range of f.

$$0 = f(1)
-2 = f(1/e)
2 = f(e).$$

d) What is the image of 10 by f?

Solution:

$$f(10) = 2\log(10)$$
.

e) Find a pre-image of 10 by f. Solution:

$$\begin{array}{ll} f\left(x\right) = 10 & \Longleftrightarrow \\ 2\log\left(x\right) = 10 & \Longleftrightarrow \\ \log\left(x\right) = 5 & \Longleftrightarrow \\ x = e^{5}. \end{array}$$

Exercise 2. Let g be the function.

$$g: x \in \mathbb{N} \longrightarrow \sqrt{x} \in R$$

- a) What are the domain and co-domain of g?
 - **Solution:** Domain: \mathbb{N} . Co-domain: R.

b) Write in mathematical notation the range of g.

Solution:

$$g(\mathbb{N}) = \{g(x) \mid x \in \mathbb{N}\} = \{y \in R \mid \exists x \in \mathbb{N}, g(x) = y\}$$

c) Find three elements in the range of g.

Solution:

$$0 = g(0)$$

$$1 = g(1)$$

$$\sqrt{2} = g(2).$$

d) What is the image of 10 by g?

Solution:

$$g(10) = \sqrt{10}.$$

e) Find a the pre-image of 10 by g.

Solution:

$$\begin{array}{lll} g\left(x\right)=10 & \Longleftrightarrow \\ x\in\mathbb{N} \text{ and } \sqrt{x}=10 & \Longleftrightarrow \\ x\in\mathbb{N} \text{ and } x=100 & \Longleftrightarrow \\ x=100. & \end{array}$$

f) Find a pre-image of 1/2 by g.

Solution:

$$\begin{array}{ll} g\left(x\right)=1/4 & \Longleftrightarrow \\ x\in\mathbb{N} \text{ and } \sqrt{x}=1/2 & \Longleftrightarrow \\ x\in\mathbb{N} \text{ and } x=1/4. \end{array}$$

1/2 belongs to the co-domain of g, but it has no pre-image by g, since $(1/2)^2 = 1/4$ does not belong to the domain of g.

Exercise 3. Let h be the function.

$$h:(n,x)\in\mathbb{N}\times R\longrightarrow 1+x+\ldots+x^n\in R$$

a) What are the domain and co-domain of h?

Solution: Domain: $\mathbb{N} \times R$. Co-domain: R.

b) Write in mathematical notation the range of h.

Solution:

$$h\left(\mathbb{N}\times R\right) = \{h\left(n,x\right)\mid n\in\mathbb{N},\,x\in R\} = \{y\in R\mid \exists x\in R,\,\exists n\in\mathbb{N},\,h\left(n,x\right)=y\}$$

c) Find three elements in the range of h.

Solution:

$$1 = h(0,1) = h(0,100)
11 = h(1,10)
1 + \sqrt{2} = h(1,\sqrt{2}).$$

d) What is the image of (2,10) by h? Solution:

$$h(2,10) = 1 + 10 + 100 = 111$$
.

e) Find a pre-image of 10 by h.

Solution:

$$h(1,9) = 10.$$

Exercise 4. Let r be the function.

$$r \left\{ \begin{array}{ll} \mathbb{Z} \times R & \longrightarrow & R \\ (m,x) & \longrightarrow & 1+x+\ldots+x^m \end{array} \right.$$

Compare this function to the previous function.

Exercise 5. Let s be the function.

$$s: u \in \{0..99\} \longrightarrow \left(\left\lfloor \frac{u}{10} \right\rfloor, u - 10 \cdot \left\lfloor \frac{u}{10} \right\rfloor \right) \in \mathbb{N} \times \mathbb{N}$$

a) What are the domain and co-domain of s?

Solution: Domain: $\{0...99\}$. Co-domain: $\mathbb{N} \times \mathbb{N}$.

b) Write in mathematical notation the range of s.

Solution:

$$s(\{0..99\}) = \{s(n) \mid n \in \{0..99\}\} = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid \exists u \in \{0..99\}, s(u) = (m, n)\}.$$

c) Find three elements in the range of s.

Solution:

$$(0,0) = s(0)$$

 $(1,2) = s(12)$

$$(9,9) = s(99).$$

d) What is the image of 10 by s? Solution:

$$s(10) = (1,0)$$
.

e) Find a pre-image of (7,6) by s. Solution:

$$s(76) = (7,6)$$
.

Exercise 6. What is wrong in the following function definition?

$$f: x \in \mathbb{N} \longrightarrow \sqrt{x} \in \mathbb{N}$$

Solution: As it is defined, f(x) does not always belong to the co-domain: $f(2) \notin \mathbb{N}$.

Exercise 7. For each of the following functions,

- a) Either prove that it is onto or prove that it is not onto.
- **b)** Either prove that it is one-to-one or prove that it is not one-to-one.
- c) Either prove that it is a bijection or prove that it is not a bijection.

$$\begin{array}{ccccc} f:x\in R^+ & \longrightarrow & \sqrt{x}\in R\\ g:x\in R^+ & \longrightarrow & \sqrt{x}\in R^+\\ h:x\in \mathbb{N} & \longrightarrow & \sqrt{x}\in R^+\\ r:x\in R & \longrightarrow & (x,2x)\in R\times R\\ s:x\in R & \longrightarrow & 2x\in R\\ t:x\in \mathbb{N} & \longrightarrow & 2x\in \mathbb{N} \end{array}$$

Solution:

$$f: x \in R^+ \longrightarrow \sqrt{x} \in R$$

- a) $-1 \in R$ and $\forall x \in R^+, \sqrt{x} \neq -1$, so f is not onto.
- **b)** $\forall x \in R^+, \forall y \in R^+, x \neq y \Longrightarrow \sqrt{x} \neq \sqrt{y}$, so f is one-to-one.
- c) f is not a bijection, since it is not onto.

$$g: x \in \mathbb{R}^+ \longrightarrow \sqrt{x} \in \mathbb{R}^+$$

- a) $\forall y \in R^+, \exists x = y^2 \in R^+, \text{ s.t. } g(x) = y, \text{ so } g \text{ is onto.}$ In short, one could say $\forall y \in R^+, y^2 \in R^+ \text{ and } g(y^2) = y.$
- **b)** $\forall x \in R^+, \forall y \in R^+, x \neq y \Longrightarrow \sqrt{x} \neq \sqrt{y}$, so g is one-to-one.
- c) g is a bijection, since it is onto and one-to-one.

$$h: x \in \mathbb{N} \longrightarrow \sqrt{x} \in R^+$$

a) $\sqrt{1/4} = 1/2 \in R^+, \forall x \in \mathbb{N}, \sqrt{x} \neq 1/2$, so h is not onto.

- **b)** $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x \neq y \Longrightarrow \sqrt{x} \neq \sqrt{y}$, so h is one-to-one.
- c) h is not a bijection, since it is not onto.

$r: x \in R \longrightarrow (x, 2x) \in R \times R$

- a) $(0,1) \in R \times R$, $\forall x \in R$, $(x,2x) \neq (0,1)$, so r is not onto.
- **b)** $\forall x \in R, \forall y \in R, x \neq y \Longrightarrow (x, 2x) \neq (y, 2y), \text{ so } r \text{ is one-to-one.}$
- c) r is not a bijection, since it is not onto.

$s\,:\,x\in R\longrightarrow 2x\in R$

- a) $\forall y \in R, \exists x = y/2 \in R, s(x) = y, \text{ so } s \text{ is onto.}$
- **b)** $\forall x \in R, \forall y \in R, x \neq y \Longrightarrow 2x \neq 2y$, so s is one-to-one.
- c) s is a bijection, since it is onto and one-to-one.

$t\,:\,x\in {\rm I\! N} \longrightarrow 2x\in {\rm I\! N}$

- a) $1 \in \mathbb{N}$ and $\forall x \in \mathbb{N}$, $2x \neq 1$, so t is not onto.
- **b)** $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x \neq y \Longrightarrow 2x \neq 2y$, so t is one-to-one.
- c) t is not a bijection, since it is not onto.

References