CS275 GRADED HOMEWORK 9

GIVE BACK ON TUESDAY NOVEMBER 30TH 2004 AT BEGINNING OF CLASS

For each question, read **each word** with the greatest care and **without hurrying**. If you have doubts about what is asked, **go back** to the wording of the question until the meaning of the question is clear. Then try to find an answer. If you get stuck, **contact** your T.A. or me.

Please write your section number and an estimate of the time you spent on this HW.

1. Reminders

1.1. Graph isomorphisms.

Definition. Isomorphic graphs. Let G = (V, E) and G' = (V', E') be simple graphs. G and G' are said to be isomorphic if and only if and only if there exists a bijection $f: V \longrightarrow V'$ such that

$$\forall u, v \in V, \{u, v\} \in E \iff \{f(u), f(v)\} \in E'.$$

This definition is valid for graphs with loops too. In the case of multi-graphs (as defined in the helper page http://www.vis.uky.edu/~etienne/cs275/helpers.html#graphs), we will use the definition:

Definition. Isomorphic weighed/multi- graphs. Let G = (V, E, w) and G' = (V', E', w) be multi-graphs. G and G' are said to be isomorphic if and only if and only if there exists a bijection $f: V \longrightarrow V'$ such that

$$\forall u, v \in V, \ w\left(\left\{u, v\right\}\right) = w\left(\left\{f\left(u\right), f\left(v\right)\right\}\right).$$

Isomorphic directed graphs are likewise defined by replacing unordered pairs by ordered pairs, i.e. by replacing the curly brackets {} with parentheses ().

Definition. Graph Isomorphism. The function f in the definitions above is called a graph isomorphism from G to G' or between G and G'.

Proposition. If f is a graph isomorphism between two graphs G = (V, E) and G' = (V', E'), then

- a) The number of vertices is preserved: |V| = |V'|.
- **b)** The number of edges is preserved: |E| = |E'|.
- c) The degree of vertices is preserved. For all $u \in V$, one has $\deg(u) = \deg(f(u))$. In the case of directed graphs, one also has $\deg^+(u) = \deg^+(f(u))$ and $\deg^-(u) = \deg^-(f(u))$.
- d) In weighed graphs (multi-graphs), the multiplicity of vertices is preserved : for all $u, v \in V$, one has $w(\{u, v\}) = w(\{f(u), f(v)\})$.
- e) Paths and circuits are preserved: the image of a path (resp. circuit) in G is a path (resp. circuit) in G' with same length.
- f) For any number $d \in \mathbb{N}$, the number of vertices of G with degree d is the same as the number of vertices of G' with degree d. That is, in mathematical notation:

$$\forall d \in \mathbb{N}, |\{v \in V \mid \deg(v) = d\}| = |\{v' \in V' \mid \deg(v') = d\}|.$$

The same holds for the in- and out- degrees of a directed graph.

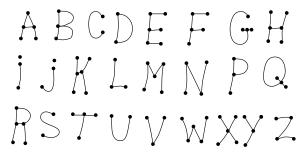
1.2. **Trees.**

Definition. Full m-ary tree. An m-ary tree T if full if and only if each vertex has 0 or m children.

Definition. Balanced rooted tree. A tree T with height (depth) h is balanced if and only if each leaf is at level h or h-1.

Definition. Complete rooted m-ary tree. A rooted m-ary tree T is complete if and only if it is full and all leaves are at the same level.

1



These drawings of graphs could be represented by the weighed pseudo-graphs:

- A: Vertices: $V = \{1, \ldots, 5\}$, e.g. numbered top to bottom and left to right. Edges: $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 5\}\}$. Multiplicity: w(e) = 1 for all edge e.
- $B: V = \{1, 2, 3\}$. $E = \{\{1, 2\}, \{2, 3\}\}$. w(e) = 2 for all edge e.
- $C: V = \{1, 2\}.$ $E = \{\{1, 2\}\}.$ w(e) = 1 for all edge e.
- $D: V = \{1, 2\}.$ $E = \{\{1, 2\}\}.$ w(e) = 2 for all edge e.
- etc...

Notice e.g. that C and D differ only by the multiplicity of their edge.

FIGURE 2.1. Graphs for Exercise 2.

2. Exercises

Exercise 1. Let G, G' and G'' be graphs such that G is isomorphic with G' and G' is isomorphic with G''. Let f_1 (resp. f_2) be a graph isomorphism between G and G' (resp. G' and G'').

- a) Prove that G is isomorphic with itself.
- b) Prove that G' is isomorphic with G, e.g. by showing that f_1^{-1} is a graph isomorphism.
- c) Prove that G is isomorphic with G'', e.g. by showing that $f_1 \circ f_2$ is a graph isomorphism.

Exercise 2. Let R be the relation defined on pairs of graphs.

$$R(G, G') \equiv G$$
 and G' are isomorphic.

- a) Show that R is an equivalence relation (you may want to use results from Ex. 1).
- b) Consider the 25 graphs A, B, etc in Figure 2.1. Using the properties listed in the "Reminder" section above, find a sufficient reason for which
 - 1) A is not isomorphic to B.
 - 2) A is not isomorphic to F.
 - 3) H is not isomorphic to E.
- c) Let \mathcal{L} be the set of the 25 graphs A, B, etc in Figure 2.1. Write the equivalence classes in \mathcal{L} for the relation R. I.e. find the subsets of \mathcal{L} that contain isomorphic graphs.

Exercise 3. Recall the definitions of Hamilton and Euler circuits, of the complete graph K_n and of the complete bipartite graph $K_{m,n}$.

- a) Write the number of Hamilton circuits in K_n as a function of n.
- b) For what values of m, n does $K_{m,n}$ have an Euler circuit?
- c) For what values of m, n does $K_{m,n}$ have a Hamilton circuit?

Exercise 4. Solve Exercises 28 and 30 of p. 643 [1].

- a) How many vertices and how many leaves does a complete m-ary tree of height h have?
- b) Show that a full m-ary balanced tree of height h has more than m^{h-1} leaves.

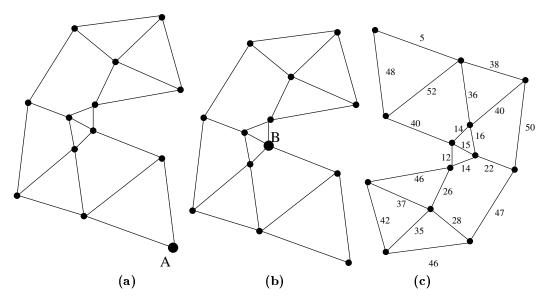


Figure 4.1. Graphs for Exercise 5.

Exercise 5. Consider the graphs drawn in Figure 4.1.

- a) Draw a spanning tree of the graph in Figure 4.1 (a), rooted in A.
- b) Draw a spanning tree of the graph in Figure 4.1 (b), rooted in B.
- c) Draw a minimal spanning tree of the graph in Figure 4.1 (c).
- d) What is the total length of the edges in this minimal spanning tree?

References

[1] K. H. Rosen. Discrete Mathematics and Its Applications. Mc Graw Hill, 5 edition, 2003.