CS275 GRADED HOMEWORK 5

GIVE BACK ON TUESDAY OCTOBER. 26TH 2004 AT BEGINNING OF CLASS

For each question, read each word with the greatest care and without hurrying. If you have doubts
about what is asked, go back to the wording of the question until the meaning of the question is clear.
Then try to find an answer. If you get stuck, don’t hesitate to contact your T.A. or me.

Please write your section number on your homework as well as a rough estimate of the time you spent
solving it.

1. REMINDER ABOUT THE CLASS OF TUESDAY OcCT. 19TH.

Proposition 1. Generalized pigeonhole principle. Let x1, ...,z be real numbers.
If Zle x; = n for some number n € R, then, Ji € {1,...,k}, x; > .

If furthermore the z; are all integers, then Ji € {1,...,k}, z; > [#]. This is Theorem 2 p. 314 of [1].
The following was also shown in class.

Proposition 2. Let z1,...,z, € R. If Zle z; = n for some n € R, then, Ji € {1,... k}, z; < 7.
This property was also shown.

Proposition 3. Let x1,...,x; be natural numbers.
If these numbers are two-by-two distinct, then max{z; | 1 <i<k}>k—1 and Zle x; > (k_;)k.

The converse of this proposition is also of interest:

Proposition 4. Let x1, ...,z be natural numbers.

If either max{x; | 1<i<k}<k—1or Zle X < @, then x; = x; for some i # j.
Also, the definition of a subsequence of a sequence was given. The definition below corresponds to that
on p. 317 of [1].
Definition. Let X = (z1,...,zy) be a sequence of length N and 1 <i; < ... < iy < N be a strictly
increasing sequence of integers. Then the sequence

Liyy Ligy-wyLipy

is called the subsequence of X defined by (i1, ...,in).

The four propositions and the definition above may or may not be useful in solving the following exercises.

2. HOMEWORK EXERCISES

Please justify each of your answers.

Exercise 1. Let R be the relation on natural numbers R (z,y) = y € {z,  + 2}. You may find helpful
to draw a figure representing this relation.

a) Determine the basic properties of R : is it reflexive, symmetric, antisymmetric, transitive?
Solution:
Reflexive: z € {z,z + 2};
Not symmetric: R (0,2), but not R (2,0).
Antisymmetric: By contradiction: if z € {y,y+2} Ay € {z,2+ 2} and z # y, then z = y + 2
and thus y ¢ {z, x4+ 2} = {y + 2,y + 5}.
Not transitive R (0,2), R(2,4), but not R (0,4).
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b) Find all the elements y such that R? (0,y) is true, and all the y s.t. R?(1,y) is true.

Solution:
{y|R?(0,»)} = {y|32R(0,2) A R(z,y)} ={y | 3w €{0,2} A R(x,y)}
= {y | y€{0,2} \% 96{274}}:{07274}‘
{yIR?(Ly} = {y|3xR(1,2) ARy} ={y | 3xe{l,3} A R(x,y)}

{y | y€{173} \ 96{173}}:{17375}‘

c) Define in mathematical notation the relations R? and R", for any n € N.

Solution:
R*(z,y) = 3z eNR(z,2) A R(z,y)
R" (z,y) = 3x1,...,2n-1 ENR(z,21) A R(xp-1,y) AVie{l...n—2}, R(x;,2i11) -

d) Is the relation R* an order relation on the natural numbers?
Solution: Yes: it is easy to show that R* (z,y) is true iff z —y is an even non-negative integer. It
is easy to show that R* is reflexive and antisymmetric and we saw in class that R* is the transitive
closure of R and it is transitive.

e) Is the relation R* a total order on the natural numbers?
Solution: No: Neither R* (0,1) nor R* (1,0) are true and thus 0 and 1 are not comparable.

Exercise 2. Let f be a function from a set A to a set B and let S and T be subsets of A.
a) Show that f (SUT) = f(S)U f(T).

Solution:

F(SUT)

lye B | 3ye SUT, f(z) =y}
= {yeB|WesS flx)=yV WeT, f(z) =y}
lyeB|WeSs fx)=ytu{yeB | yeT, f(z) =y}

f(S)Uf(T)
b) Show that f(SNT)C f(S)n f(T).
Solution:
yeF(SNT) JreSNT, f(x)=y

Jx,xeSANzeT A f(x)=y
Bx,x e SAfx)=y) AN Tz, zeT A f(x) =y)
f(S) N f(T)

(R

¢) Show that SCT = f(SNT)=f(S)n f(T).
Solution: If S C T, then f(S) C f(T) (easy) and f(S)N f(T) = f(S). Since moreover
SNT =S,onehas f(SNT)=f(S)=f(S)Nf(T).

d) Find sets A, B, S, T and a function f such that f(SNT) C f(S)N f(T).
Solution: Let f : e N— 1€ N,and S = {0} and T = {1}. Then f(SNT)=f(0) =0 C
{1} ={1pn{1} = F(S) N f(T).

This is an augmented version of Exercise 32 p. 109 of [1].

Exercise 3. In a deck, there are 32 cards. Each card is of one of four possible suits and one of eight
possible kinds, so that the deck can be identified with the set

D={(s,k) |s€{1,2,3,4}, ke {1,..,8} }.
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a) How big should a set of cards be, to guarantee that two or more of its cards are of same kind?
Solution: 9, since there are 8 kinds of cards.

b) How many different sets of five cards do not have two or more cards of the same kind?
Solution: A five-hand consisting of cards of different kinds can be defined by choosing a set
(combination) of 5 out of 8 kinds and 5 suits. The number of possibilities is

C (8,5) -4 = 57,344,

c) In a set of five cards with distinct kinds, can no three cards have consecutive kinds?
Solution: Yes: take e.g. kinds 1, 3, 5, 7, 8. There are no three consecutive kinds in this sequence.

d) In a set of five cards with distinct kinds, can no two cards have consecutive kinds?
Solution: No. Proof by contradiction. Take a set of 5 cards and order the cards so the kinds
are non-decreasing: (s1,k1),...,(s5,k5) s.t. k1 < ka... < ks. If there are no two cards with
consecutive kinds and the kinds are all distinct, then k;11 > k; + 2 for all 1 < i < 5. Since
ki1 > 1, one has ks > 3, k3 > 5, ks > 7 and k5 > 9, which is a contradiction with the assumption
k; € {1 S 8}

Exercise 4. A shop sells 5 types of donuts. One day, 14 clients came and bought a total of 96 donuts.
Each client bought one or more donuts. Justify your answers to the following questions:

a) Can you show that one type of donuts at least was sold in 20 or more exemplars?
Solution: Yes: if each type of donut had been sold in 19 or less exemplars, at most 5 - 19 = 95
donuts could have been sold. This can more formally be shown using the pigeonhole principle, as
stated in Prop. 1 above.

b) Can you show that the least sold type of donut was sold in 19 or less exemplars?
Solution: Yes: if each type of donut had been sold in 20 or more exemplars, 5 - 20 = 100 donuts
at least would have been sold. Thus since one type of donut was sold in 19 or less exemplars, the
least sold was also sold in 19 or less exemplar. This can more formally be shown Prop. 1 above.

c) Can you show that two of the clients bought the same number of donuts?
Solution: Yes: Let z;, for 1 < i < 14 be the number of donuts bought by client i. For all i,
x; > 1, since each client buys one donut at least. Since the sum of the 14 smallest integers is 105
and x1 + ...+ 214 = 96 < 105, two at least of the x; are equal.
Note: You cannot apply Prop. 4 here, since 96 is greater than 14 -13/2 = 91.

Exercise 5. Exercise 10 p. 708 of [1]: Show that F (x,y,2) = 2y + xz + yz has the value 1 if and only if
at least two of the variables x, y and z have the value 1.
Solution: The rows of the truth table of F' has a 1 only on rows in which two variables at least are 1.

[z [y[z]Fry2)]

0({0]0 0
0/0]1 0
0(1]0 0
011 1
110]0 0
1101 1
111]0 1
1711 1

Exercise 6. Exercise 4 p. 712 of [1]: Find the sum-of-products expansions of the Boolean function
F (z,y, z) that equals 1 if and only if
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A) &= 0. F (x,y,2) = Tyz + Tyz + Tyz + Tyz
b) 2y =0, F(x,y,2) = T§Z + Tyz + Tyz + Tyz + Yz + xyz
C) A Y = 0 F(x,y,2) = Yz + Tyz
d) zyz =0 F(z,y,2) =2yz + Tyz + Tyz + Tyz + xyz + zyz + vyz

Solution: The expressions above are obtained from the truth tables:

0]0]0] 1 0]0]0] 1 0]0]0] 1 0]0]0] 1
0[0[1]1 0011 0[0[1]1 0011
0[1]0]1 01|01 0[1]0]0 0101
0[1[1]1 0111 0[1[1]0 0111
1(0]0]0 1(0]0] 1 1]0]/0]0 1]0]0]1
1(0/1]0 1[0|1]1 1[0/1]0 1[0|1]1
1[1/0]0 1[1]0]0 1[1]0]0 1[1]0]1
1[1]1]0 1[1]1]0 1[1]1]0 1[1]1]0

Exercise 7. Exercise 6 p. 712 of [1]: Find the sum-of-products expansion that represents a Boolean
function F (21, z2, 23, x4, z5) that has the value 1 if an only if three or more of the variables 1, x2, x3, 24
and x5 have the value 1.

Solution: The sum-of-product expansion will have 1 term with all 5 terms equal to 1, 5 terms with 4 of
the variables equal to 1 and C (5,10) = terms with 3 of the variables equal to 1 :

F (z1, 22, 23,24, 5) T1T2X3T4Ts
T1T2X3T4T5 + T1T2X3T4T5 + T1T2X3T4T5 + T1T2X3T4T5 + T1T2X3T4T5

CC1I2I3£E4Q_75 + I1I2f3174.f5 + CC1£E2I3£C4CE5 + 1_31172$3I4Q_75 + CC1£C2§?3£E4ZC5

+ 4+

CC1§?2I3£E4I5 + 1_31172$31_74£C5 + CC1£E2§?3£C4ZC5 + f1I2f3I4I5 + f1f2I3$4ZC5
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