CS275 GRADED HOMEWORK 5

GIVE BACK ON TUESDAY OCTOBER. 26TH 2004 AT BEGINNING OF CLASS

For each question, read **each word** with the greatest care and **without hurrying**. If you have doubts about what is asked, **go back** to the wording of the question until the meaning of the question is clear. Then try to find an answer. If you get stuck, don't hesitate to **contact** your T.A. or me.

Please write your section number on your homework as well as a rough estimate of the time you spent solving it.

1. Reminder about the class of Tuesday Oct. 19th.

Proposition 1. Generalized pigeonhole principle. Let x_1, \ldots, x_k be real numbers. If $\sum_{i=1}^k x_i = n$ for some number $n \in \mathbb{R}$, then, $\exists i \in \{1, \ldots, k\}$, $x_i \geq \frac{n}{k}$.

If furthemore the x_i are all integers, then $\exists i \in \{1, \dots, k\}$, $x_i \ge \left\lceil \frac{n}{k} \right\rceil$. This is Theorem 2 p. 314 of [1]. The following was also shown in class.

Proposition 2. Let $x_1, \ldots, x_k \in \mathbb{R}$. If $\sum_{i=1}^k x_i = n$ for some $n \in \mathbb{R}$, then, $\exists i \in \{1, \ldots, k\}$, $x_i \leq \frac{n}{k}$.

This property was also shown.

Proposition 3. Let x_1, \ldots, x_k be natural numbers.

If these numbers are two-by-two distinct, then $\max\{x_i \mid 1 \le i \le k\} \ge k-1$ and $\sum_{i=1}^k x_i \ge \frac{(k-1)k}{2}$.

The converse of this proposition is also of interest:

Proposition 4. Let x_1, \ldots, x_k be natural numbers.

If either max $\{x_i \mid 1 \le i \le k\} < k-1$ or $\sum_{i=1}^k x_i < \frac{(k-1)k}{2}$, then $x_i = x_j$ for some $i \ne j$.

Also, the definition of a subsequence of a sequence was given. The definition below corresponds to that on p. 317 of [1].

Definition. Let $X = (x_1, ..., x_N)$ be a sequence of length N and $1 \le i_1 < ... < i_M \le N$ be a strictly increasing sequence of integers. Then the sequence

$$x_{i_1}, x_{i_2}, \ldots, x_{i_M}$$

is called the **subsequence** of X defined by (i_1, \ldots, i_M) .

The four propositions and the definition above may or may not be useful in solving the following exercises.

2. Homework exercises

Please justify each of your answers.

Exercise 1. Let R be the relation on natural numbers $R(x,y) \equiv y \in \{x, x+2\}$. You may find helpful to draw a figure representing this relation.

- a) Determine the basic properties of R: is it reflexive, symmetric, antisymmetric, transitive?
- b) Find all the elements y such that $R^2(0,y)$ is true, and all the y s.t. $R^2(1,y)$ is true.
- c) Define in mathematical notation the relations R^2 and R^n , for any $n \in \mathbb{N}$.
- d) Is the relation R^* an order relation on the natural numbers?
- e) Is the relation R^* a total order on the natural numbers?

Exercise 2. Let f be a function from a set A to a set B and let S and T be subsets of A.

- a) Show that $f(S \cup T) = f(S) \cup f(T)$.
- **b)** Show that $f(S \cap T) \subseteq f(S) \cap f(T)$.
- c) Show that $S \subseteq T \implies f(S \cap T) = f(S) \cap f(T)$.
- **d)** Find sets A, B, S, T and a function f such that $f(S \cap T) \subset f(S) \cap f(T)$.

This is an augmented version of Exercise 32 p. 109 of [1].

Exercise 3. In a deck, there are 32 cards. Each card is of one of four possible suits and one of eight possible kinds, so that the deck can be identified with the set

$$\mathcal{D} = \{(s,k) \mid s \in \{1,2,3,4\}, k \in \{1,...,8\}\}.$$

- a) How big should a set of cards be, to guarantee that two or more of its cards are of same kind?
- b) How many different sets of five cards do not have two or more cards of the same kind?
- c) In a set of five cards with distinct kinds, can no three cards have consecutive kinds?
- d) In a set of five cards with distinct kinds, can no two cards have consecutive kinds?

Exercise 4. A shop sells 5 types of donuts. One day, 14 clients came and bought a total of 96 donuts. Each client bought one or more donuts. Justify your answers to the following questions:

- a) Can you show that one type of donuts at least was sold in 20 or more exemplars?
- b) Can you show that the least sold type of donut was sold in 19 or less exemplars?
- c) Can you show that two of the clients bought the same number of donuts?

Exercise 5. Exercise 10 p. 708 of [1]: Show that F(x, y, z) = xy + xz + yz has the value 1 if and only if at least two of the variables x, y and z have the value 1.

Exercise 6. Exercise 4 p. 712 of [1]: Find the sum-of-products expansions of the Boolean function F(x, y, z) that equals 1 if and only if

- **a)** x = 0
- **b)** xy = 0
- **c)** x + y = 0
- $\mathbf{d)} \ xyz = 0$

Exercise 7. Exercise 6 p. 708 of [1]: Find the sum-of-products expansion that represents a Boolean function $F(x_1, x_2, x_3, x_4, x_5)$ that has the value 1 if an only if three or more of the variables x_1, x_2, x_3, x_4 and x_5 have the value 1.

REFERENCES

[1] K. H. Rosen. Discrete Mathematics and Its Applications. Mc Graw Hill, 5 edition, 2003.