CS275 GRADED HOMEWORK 4 - PROVISIONAL SOLUTION

GIVE BACK ON TUESDAY OCTOBER. 19TH 2004 AT BEGINNING OF CLASS

For each question, read **each word** with the greatest care and **without hurrying**. If you have doubts about what is asked, **go back** to the wording of the question until the meaning of the question is clear. Then try to find an answer. If you get stuck, don't hesitate to **contact** your T.A. or me.

Please write your section number on your homework as well as a rough estimate of the time you spent solving it.

Exercise 1. In town, there are just 3 restaurants:

- A seafood restaurant serving dishes from a "set" S.
- A vegetarian restaurant serving dishes from a "set" \mathcal{V} . $\mathcal{S} \cap \mathcal{V} = \emptyset$.
- A carnivorous restaurant serving dishes from a "set" \mathcal{C} . $\mathcal{S} \cap \mathcal{C} = \mathcal{V} \cap \mathcal{C} = \emptyset$.

A dinner consists of one dish or two dishes (the order matters) from the same restaurant and ends with either a cup of coffee, a cup of liquor, a mint or nothing. Let $\mathcal{E} = \{\text{Coffee}, \text{Liquor}, \text{Mint}, \text{Nothing}\}\$ be the set of possible endings.

- a) Write in mathematical notation the set of possible dinners.
 - **Solution:** A dinner could consists of a sequence $(s, e) \in \mathcal{S} \times \mathcal{E}$ consisting of a seafood dish s and an ending e; or a sequence $(v, v', e) \in \mathcal{V} \times \mathcal{V} \times \mathcal{E}$ consisting of two vegetarian dishes and an ending; etc. Joining all the possibilities, the set of dinners can be written:

$$\begin{array}{l} \left\{ (d,e) \mid d \in \mathcal{S} \cup \mathcal{V} \cup \mathcal{C}, \ e \in \mathcal{E} \right\} \cup \left\{ (d,d',e) \mid (d,d') \in \mathcal{S}^2 \cup \mathcal{V}^2 \cup \mathcal{C}^2, \ e \in \mathcal{E} \right\} \\ = \quad \mathcal{S} \times \mathcal{E} \ \cup \ \mathcal{S} \times \mathcal{S} \times \mathcal{E} \ \cup \ \mathcal{V} \times \mathcal{E} \ \cup \ \mathcal{V} \times \mathcal{E} \ \cup \ \mathcal{C} \times \mathcal{E} \ \cup \ \mathcal{C} \times \mathcal{C} \times \mathcal{E} \\ = \quad (\mathcal{S} \cup \mathcal{V} \cup \mathcal{C}) \times \mathcal{E} \ \cup \ (\mathcal{S}^2 \cup \mathcal{V}^2 \cup \mathcal{C}^2) \times \mathcal{E} \end{array}$$

b) What is its cardinal? I.e. in how many different ways can one have dinner?

Solution: Since the sets in the union above are two-by-two disjoint, the cardinal of this set, given by the product and sum rules, is:

$$\left|\mathcal{S}\right|\cdot\left|\mathcal{E}\right|+\left|\mathcal{S}\right|^{2}\cdot\left|\mathcal{E}\right|+\left|\mathcal{V}\right|\cdot\left|\mathcal{E}\right|+\left|\mathcal{V}\right|^{2}\cdot\left|\mathcal{E}\right|+\left|\mathcal{C}\right|\cdot\left|\mathcal{E}\right|+\left|\mathcal{C}\right|^{2}\cdot\left|\mathcal{E}\right|.$$

c) What is the cardinal of the set of dinners in which two distinct dishes are served? **Solution:** There are $P(|\mathcal{S}|, 2)$ sequences without repetition of two seafood dishes. Altogether, there are

$$(P(|\mathcal{S}|,2) + P(|\mathcal{V}|,2) + P(|\mathcal{C}|,2)) \cdot |\mathcal{E}|$$

dinners in which two distinct dishes are served.

Exercise 2. Exercise 8 p. 109 of [1]: Find these values.

a)	[1.1]	1
b)	[1.1]	2
c)	$\lfloor -0.1 \rfloor$	-1
d)	[-0.1]	.0
e)	[2.99]	. 3
f)	[-2.99]	-2
g)	$\left \frac{1}{2} + \left \frac{1}{2}\right \right = \frac{1}{2}$	1
h)	$\begin{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \end{bmatrix} + \frac{1}{2} \end{bmatrix} \dots \begin{bmatrix} 0 + 1 + \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 + 1 + \frac{1}{2} \end{bmatrix}$	2

1

Exercise 3. For each of the functions below, determine whether it is onto and/or one-to-one.

a) $f: n \in \mathbb{N} \longrightarrow n+1 \in \mathbb{N}$

Solution: Not onto because 0 isn't the image by f of a natural number: $\forall n \in \mathbb{N}, n+1 \neq 0$. One-to-one because $m \neq n \Longrightarrow m+1 \neq n+1 \iff f(m) \neq f(n)$.

b) $f: x \in \mathbb{Z} \longrightarrow x^3 \in \mathbb{Z}$

Solution: Not onto because 2 isn't the image by f of a natural number: $\forall n \in \mathbb{N}, n^3 \neq 2$. One-to-one because $m \neq n \Longrightarrow m^3 \neq n^3 \iff f(m) \neq f(n)$.

c) $f: x \in \mathbb{R} \longrightarrow x^3 \in \mathbb{R}$

Solution: Onto because $\forall y \in \mathbb{R}, \exists x = \sqrt[3]{y} \in \mathbb{R} \text{ and } f(x) = y.$ One-to-one because $x \neq y \Longrightarrow x^3 \neq y^3 \iff f(x) \neq f(y).$

d) $f: n \in \mathbb{Z} \longrightarrow \lceil n/2 \rceil \in \mathbb{Z}$

Solution: Onto because, $\forall n \in \mathbb{Z}, n = f(2n)$. Not one-to-one because f(2) = f(3) = 1.

e) $f: n \in \mathbb{N} \longrightarrow (-1)^n \lfloor n/2 \rfloor \in \mathbb{Z}$

Solution: Note: f(0) = 0, f(1) = 0, f(2) = 1, f(3) = -1, f(4) = 2, f(5) = -2 ... Onto because, if $n \ge 0$, n = f(2n) and, if n < 0, n = f(-2n + 1). Not one-to-one because f(0) = f(1) = 0.

Exercise 4. Let $A = \{1 \dots 10\}$ and $B = \{1 \dots 20\}$ and define the functions

$$\begin{array}{cccc} f: & x \in A & \longrightarrow & 2x \in B \\ g: & x \in B & \longrightarrow & \left\lceil \frac{x}{2} \right\rceil \in A \end{array}$$

a) Prove or disprove that f is onto and that it is one-to-one.

Solution: Not onto because, $1 \in B$ and $\forall m \in A, 2m \neq 1$. One-to-one because $m \neq n \Longrightarrow f(m) \neq f(n)$.

b) Prove or disprove that g is onto and that it is one-to-one.

Solution: Onto because, $\forall m \in A, 2m \in B \text{ and } \forall g (2m) = m.$ Not one-to-one because f(1) = f(2).

c) Prove or disprove that $g \circ f$ is onto and that it is one-to-one.

Solution: Note that, $\forall m \in A$, $(g \circ f)(m) = \lceil \frac{2m}{2} \rceil = \lceil m \rceil = m$. This function is clearly onto and one-to-one.

Exercise 5. Let R be a relation on a set A containing two or more elements. Prove or disprove the following statements

a) If R is symmetric and transitive, then R is reflexive.

Solution: False: If $R = \emptyset$, i.e. no elements verify R(x, y), then (A, \emptyset) is symmetric and transitive (just check the definitions), but not reflexive.

b) If R is an equivalence relation, then R is not a total order relation.

Solution: True: Proof by contradiction.

Suppose R is an equivalence relation and a total order.

By assumption, there exist two distinct elements $x \neq y$ of A.

Since R is a total order, either R(x,y) is true, or R(y,x) is true. In the first case, since R is symmetric¹, one also has R(y,x). In the second case, one also has R(x,y). Thus, in all cases, both R(x,y) and R(y,x) are true.

Since R is antisymmetric², one has x = y, which contradicts the initial statement $x \neq y$.

¹Because it is an equivalence relation.

²Because R is an order relation.

- c) If R is an equivalence relation, then R is not a partial order relation. **Solution:** False: Take $R = \{(x, x) \mid x \in A\}$, then (A, R) is an equivalence relation and also a poset (as seen in class).
- **d)** If R is symmetric and antisymmetric, then $\forall x, y \in A, R(x,y) \Longrightarrow x = y$. **Solution:** True: If R(x,y) is true, then, by symmetry, R(y,x) is also true. Since then, R(y,x) and R(x,y) are true, one has, by antisymmetry, x=y.

Exercise 6. For each of the relations below

- **a)** $A = \mathbb{Z}, \ R(x,y) \equiv x = \max\{x,y\}$ **b)** $A = \mathbb{Z}, \ R = \{(x,y) \mid x \le y \land x^2 y^2 = 0\}$ **c)** $A = \mathbb{Z}, \ R = \{(x,y) \mid x \le y \lor x^2 y^2 = 0\}$
- 1): Circle, on the grids³ $\{-4,...,4\} \times \{-4,...,4\}$ of Figure 6.1, the points (x,y) that verify R(x,y).

Solution: See Figure 6.1.

2): Prove or disprove that R is reflexive, symmetric, antisymmetric, transitive. Don't forget that the R is defined on \mathbb{Z} , not just $\{-4, \ldots, 4\}$.

Solution:

a) Note that $x = \max\{x, y\}$ iff $x \ge y$. R is reflexive, since $\forall x, x = \max\{x, x\}$. Not symmetric, since R(2,1), but not R(1,2). Antisymmetric, since $x \geq y$ and $y \geq x$ implies x = y. Transitive, since $x \ge y$ and $y \ge z$ implies $x \ge z$.

You could also just say that, since (\mathbb{Z}, R) is the well-known poset (\mathbb{Z}, \geq) , R is reflexive, not symmetric, antisymmetric and transitive.

- b) R is reflexive, since $\forall x, x \leq x \land x^2 x^2 = 0$. Not symmetric, since R(-1,1), but not R(1,-1). Antisymmetric, since $x \geq y$ and $y \geq x$ implies x = y. Transitive, since $x \leq y \wedge y \leq z \Longrightarrow x \leq z$ and $x^2 = y^2 \wedge y^2 = z^2 \Longrightarrow x^2 = z^2$. **c)** R is reflexive, since $\forall x, x \leq x \vee x^2 - x^2 = 0$. Not symmetric, since R(0,1), but not R(1,0).
- Not antisymmetric, since R(-1,1) and R(1,-1). Transitive, since $x \le y \land y \le z \implies x \le z$ and $x^2 = y^2 \land y^2 = z^2 \implies x^2 = z^2$.

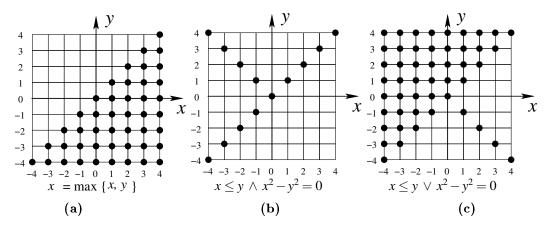


Figure 6.1. Grids for Exercise 6. Don't forget that the relations are defined on \mathbb{Z} and not just $\{-4...4\}$. These grids are here only to illustrate "what the relations look like".

³You may copy these grids on any sheet of paper.

Exercise 7. Let $A = \{0,1\}^3 \cup \{0,1\}^4 \cup \{0,1\}^5 \dots$ be the set of bit strings of length 3 or more and let R be the relation on A consisting of all pairs (x,y) such that x and y are equal except perhaps in their first three bits.

Solution: Notation: we will write $x = (x_1, x_2, x_3, \dots, x_n), y = (y_1, \dots, y_m)$ elements of A. The relation R can then be written

$$R(x,y) \equiv m = n \land \forall i > 3, x_i = y_i.$$

- a) Show that R is an equivalence relation on A. Solution: This proof is trivial: R is reflexive because $\forall x \in A$, x is the same length as itself, and $\forall 3 < i < n$, $x_i = x_i$. Likewise, R is symmetric. And it is transitive: if $z = (z_1, ..., z_p)$ and n = m and $\forall 3 < i \le n$, $x_i = y_i$ and m = p and $\forall 3 < i \le m$, $y_i = z_i$, then n = p and
- b) Write in mathematical notation the equivalence classes of the strings
 - 1) 110

Solution:

 $\forall 3 < i \le n, \, x_i = z_i.$

$$\overline{110} = \{ y \in A \mid R(110, y) \}
= \{ (y_1, y_2, y_3) \mid \forall 1 \le i \le 3, y_i \in \{0, 1\} \}
= \{0, 1\}^3$$

2) 1010

Solution:

$$\overline{1010} = \{ y \in A \mid R(1010, y) \}
= \{ (y_1, y_2, y_3, 0) \mid \forall 1 \le i \le 3, y_i \in \{0, 1\} \}
= \{0, 1\}^3 \times \{0\}$$

3) 11110

Solution:

$$\overline{11110} = \{ y \in A \mid R(11110, y) \}
= \{ (y_1, y_2, y_3, 1, 0) \mid \forall 1 \le i \le 3, y_i \in \{0, 1\} \}
= \{0, 1\}^3 \times \{1\} \times \{0\}$$

c) Write in lexicographic order 4 elements of each of the equivalence classes above.

Solution: Writing \leq the lexicographic order, one has e.g.

- 1) $000 \le 001 \le 010 \le 011$
- 2) $1000 \le 1010 \le 1100 \le 1110$
- 3) $00010 \le 10010 \le 11010 \le 11110$

Note: This exercise is largely inspired by Exercises 8 p. 513 and 25 p. 514 of [1].

References

[1] K. H. Rosen. Discrete Mathematics and Its Applications. Mc Graw Hill, 5 edition, 2003.