CS275 GRADED HOMEWORK 4 - PROVISIONAL SOLUTION

GIVE BACK ON TUESDAY OCTOBER. 19TH 2004 AT BEGINNING OF CLASS

For each question, read each word with the greatest care and without hurrying. If you have
doubts about what is asked, go back to the wording of the question until the meaning of the
question is clear. Then try to find an answer. If you get stuck, don’t hesitate to contact your T.A.
or me.

Please write your section number on your homework as well as a rough estimate of the time you
spent solving it.

Exercise 1. In town, there are just 3 restaurants:

e A seafood restaurant serving dishes from a “set” S.
e A vegetarian restaurant serving dishes from a “set” V. SNV = (.
e A carnivorous restaurant serving dishes from a “set” C. SNC =V NC = (.
A dinner consists of one dish or two dishes (the order matters) from the same restaurant and ends
with either a cup of coffee, a cup of liquor, a mint or nothing. Let & = {Coffee, Liquor, Mint, Nothing}
be the set of possible endings.
a) Write in mathematical notation the set of possible dinners.
Solution: A dinner could consists of a sequence (s,e) € S x £ consisting of a seafood dish
s and an ending e; or a sequence (v,v';e) € ¥V x V x & consisting of two vegetarian dishes
and an ending; etc. Joining all the possibilities, the set of dinners can be written:

{(d,e) |[de SUVUC, ecE}uU{(d,de) ]| (d d)eS?UVIUC? ec&}
= SXEUSXSEXEUYXEUYXVYXEUCXEULCXCXE
= (SUVUC)xEU (S2UV?uc?) x&

b) What is its cardinal? I.e. in how many different ways can one have dinner?
Solution: Since the sets in the union above are two-by-two disjoint, the cardinal of this
set, given by the product and sum rules, is:

S |EL+ IS - €]+ V] - €]+ [VI*- €] + [C] - €] + [C]* - €] -

c) What is the cardinal of the set of dinners in which two distinct dishes are served?
Solution: There are P (|S|,2) sequences without repetition of two seafood dishes. Alto-
gether, there are

(P(I5],2) + P(IV],2) + P(IC],2)) - |€]

dinners in which two distinct dishes are served.

Exercise 2. Exercise 8 p. 109 of [1]: Find these values.

) 1oL et 1
D) [1L] e 2
C) Lm0, L -1
Q) [0 0] e 0
) [2.00] oot 3
E) [m2.09] . ettt -2
8) [ (A1) e 3+1 =1
B) [[2] 4 3]+ 2] oot (0+1+1] =2
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Exercise 3. For each of the functions below, determine whether it is onto and/or one-to-one.

a) f:neN—n+1eN
Solution: Not onto because 0 isn “t the image by f of a natural number: Vn € N,n+1 # 0.
One-to-one because m#n=m+1#n+1 < f(m) # f(n).

b) f:2€Z —a13€l
Solution: Not onto because 2 isn“t the image by f of a natural number: ¥n € N, n3 # 2.
One-to-one because m # n = m?3 # n® < f(m) # f(n).

c) f:xeR— 2R

Solution: Onto because Vy € R, 3z = ¢y € R and f (z) = .
One-to-one because = # y = 23 # y> < f(2) # f ().
d) f:neZ—[n/21€Z
Solution: Onto because, ¥n € Z, n = f (2n).
Not one-to-one because f (2) = f(3) = 1.
e) f:neN— (=1)"|n/2]€Z
Solution: Note: f(0) =0, f(1)=0, f(2)=1,f3)=-1,f(4) =2, f(5)=—
Onto because, if n >0, n = f (2 )a d, fn<0 n=f(-2n+1).
) =

Not one-to-one because f (0) = f (1

Exercise 4. Let A= {1...10} and B = {1...20} and define the functions

f: e A — 2zxeB
g: r€B — [%1614

a) Prove or disprove that f is onto and that it is one-to-one.
Solution: Not onto because, 1 € B and Vm € A, 2m # 1.
One-to-one because m # n = f (m) # f (n).

b) Prove or disprove that g is onto and that it is one-to-one.
Solution: Onto because, Ym € A, 2m € B and Vg (2m) = m.
Not one-to-one because f (1) = f (2).

c) Prove or disprove that g o f is onto and that it is one-to-one.
Solution: Note that, Vm € A, (go f)(m) = (27"1} = [m] =m.
This function is clearly onto and one-to-one.

Exercise 5. Let R be a relation on a set A containing two or more elements. Prove or disprove
the following statements

a) If R is symmetric and transitive, then R is reflexive.
Solution: False: If R = (), i.e. no elements verify R (z,y), then (A, () is symmetric and
transitive (just check the definitions), but not reflexive.

b) If R is an equivalence relation, then R is not a total order relation.
Solution: True: Proof by contradiction.
Suppose R is an equivalence relation and a total order.
By assumption, there exist two distinct elements x # y of A.
Since R is a total order, either R (z,y) is true, or R (y,x) is true. In the first case, since R
is symmetric', one also has R (y,z). In the second case, one also has R (x,%). Thus, in all
cases, both R (z,y) and R (y,x) are true.
Since R is antisymmetric?, one has x = y, which contradicts the initial statement x # y.

IBecause it is an equivalence relation.
2Because R is an order relation.
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c) If R is an equivalence relation, then R is not a partial order relation.

Solution: False: Take R = {(z,z) | = € A}, then (A, R) is an equivalence relation and
also a poset (as seen in class).

d) If R is symmetric and antisymmetric, then Va, y € A, R(x,y) = z = y.
Solution: True: If R (z,y) is true, then, by symmetry, R (y,z) is also true. Since then,
R(y,z) and R (x,y) are true, one has, by antisymmetry, x = y.

Exercise 6. For each of the relations below
a) A=Z, R(z,y) =
b) A=Z,R= {(:c,y
c) A=7Z,R= {(:c,y

x=max{z,y}
)|z§y/\:l:2—y2:()}
) |z <yva?—y*=0}

1): Circle, on the grids® {—4,...,4} x {—4,...,4} of Figure 6.1, the points (z,y) that verify
R(z,y).
Solution: See Figure 6.1.

2): Prove or disprove that R is reflexive, symmetric, antisymmetric, transitive. Don "t forget
that the R is defined on Z, not just {—4,...,4}.

Solution:

a) Note that x = max {z,y} iff x > y. Ris reflexive, since Vz, z = max {x, x}. Not symmetric,
since R(2,1), but not R(1,2). Antisymmetric, since > y and y > z implies z = y.
Transitive, since > y and y > z implies z > z.

You could also just say that, since (Z, R) is the well-known poset (Z, >), R is reflexive, not
symmetric, antisymmetric and transitive.

b) R is reflexive, since Vz, z < 2 A 22 — 22 = 0. Not symmetric, since R (—1,1), but not
R(1,—1). Antisymmetric, since * > y and y > x implies © = y. Transitive, since z <
yANy<z= x<zand 22 =y? A y? =22 = 2% =22

c) Ris reflexive, since Vo, © < x V 22 — 22 = 0. Not symmetric, since R (0, 1), but not R (1,0).
Not antisymmetric, since R (—1,1) and R (1, —1). Transitive, sincez < yAy <z = = < z
and 22 = y? A y? =22 = 2?2 =22

| Y . AY fy
4 4 4
3 3 —l l— 3
2 2 L 4 L 2 2
1 1 L 4 4 1
0 0 4 > () >
-1 x—l 4 x—l L 4 X
) -2 \ 4 -2
-3 -3 —SH
—4 —4‘_T -4 T_‘
4 -3-2-101 2 3 4 -4 -3-2-10 1 2 3 4 -4 -3-2-10 1 2 3 4
X =max {X Y} x<yAx*—y>=0 x<yVvVx—y*=0
(a) (b) (c)

FIGURE 6.1. Grids for Exercise 6. Don “t forget that the relations are defined on Z

and not just {—4...4}. These grids are here only to illustrate “what the relations
look like”.

3You may copy these grids on any sheet of paper.



CS275 GRADED HOMEWORK 4 - PROVISIONAL SOLUTION 4
Exercise 7. Let A = {0,1}°U{0,1}*U{0,1}’ ... be the set of bit strings of length 3 or more and
let R be the relation on A consisting of all pairs (z,y) such that « and y are equal except perhaps
in their first three bits.

Solution: Notation: we will write z = (z1,z2,23,...,2n), ¥y = (Y1,-..,Ym) elements of A. The

relation R can then be written
R(z,y) = m=n AVYi>3, z;=uy;.

a) Show that R is an equivalence relation on A.
Solution: This proof is trivial: R is reflexive because Va € A, x is the same length as itself,

and V3 < i < n, x; = ;. Likewise, R is symmetric. And it is transitive: if z = (z1, ..., 2p)
andn=mandV3<i:<n,z; =y, and m =pand V3 < i < m, y; = z;, then n = p and
V3<i<n,z=z.

b) Write in mathematical notation the equivalence classes of the strings

1) 110
Solution:
110 = {yeA| R(110,y)}
= {(y1,y2,u3) | V1 <i <3,y €{0,1}}
= {0.1}°
2) 1010
Solution:
1010 = {ye A | R(1010,y)}
= {(y1,92,93,0) | VI <i <3, y; € {0,1}}
= {0,1}* x {0}
3) 11110
Solution:
II110 = {yeA| R(11110,y)}

= {(y1,92,¥3,1,0) | V1 <i <3,y € {0,1}}
= {0,137 x {1} x {0}

c) Write in lexicographic order 4 elements of each of the equivalence classes above.
Solution: Writing < the lexicographic order, one has e.g.
1) 000 < 001 <010 =< 011
2) 1000 < 1010 < 1100 < 1110
3) 00010 < 10010 < 11010 < 11110

Note: This exercise is largely inspired by Exercises 8 p. 513 and 25 p. 514 of [1].
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