CS275 GRADED HOMEWORK

GIVE BACK ON TUESDAY SEP. 21ST 2004 AT BEGINNING OF CLASS

For each question, read **each word** with the greatest care and **without precipitation**. If you have doubts about what is asked, **go back** to the wording of the question until the meaning of the question is clear. Then try to find an answer. If you get stuck, don't hesitate to **contact** your T.A. or me.

Please see also the example solution of a "prove by induction" exercise, at the end of this document.

Please write your section number on your homework as well as a rough estimate of the time you spent solving it.

Exercise 1. Let A, B and C be the sets defined by

$$\begin{array}{lcl} A & = & \left\{x \in \mathbb{Z} \mid x^2 < 9\right\} \\ B & = & \left\{x \in \mathbb{N} \mid x^2 \leq 9\right\} \\ C & = & \left\{x \in \mathbb{N} \mid x \leq 100 \, \land \, \exists y \in \mathbb{N}, \, y^2 = x\right\} \end{array}$$

- a) Determine the numbers of elements of A, B and C. That is, determine |A|, |B| and |C|.
- **b)** Determine the number of elements in $A \cup B$, $A \cup C$, $A \cup C$, $A \cap B$, $A \cap C$, $B \cap C$.
- c) Determine the number of elements in $A \times B$, $A \times C$ and $A \times B \times C$.

Exercise 2. Write in English the following statement

$$\forall A \forall B, |A \cup B| = |A| + |B|$$
.

Prove or disprove this statement.

Exercise 3. Write in English the following statement

$$\forall A \exists B, |A \cup B| \neq |A| + |B|$$
.

Prove or disprove this statement.

Exercise 4. Write in English the following statement

$$\exists A \,\exists B, \, |A \times B| = |A| \cdot |B|$$
.

Prove or disprove this statement.

Exercise 5. Write, in mathematical notation, the negations of the following statements

- **a)** $a = 1 \implies a > 1$.
- **b)** $b^2 \neq 4 \iff b \notin \{-2, 2\}.$
- c) $\forall x, x \geq 2 \Longrightarrow -2x \geq 4$.

Hint: Use tables 6 and 7 of [1], p. 24.

Exercise 6. For all natural number n, let x_n be a real number. Let $x_1 = 2$ and, for all $n \ge 1$, define

$$x_{n+1} = \frac{1}{2}x_n.$$

- a) Compute x_2 , x_3 , x_4 and x_5 .
- **b)** Show by induction that $\forall m \in \mathbb{N}, x_m = 2^{2-m}$.
- c) Let ε be a strictly positive real number. Show that there exists a natural number k such that $x_k < \varepsilon$.

Hint: $\varepsilon = 2^{\log_2 \varepsilon} < 2^{\lfloor \log_2 \varepsilon \rfloor - 1}$, where \log_2 is base-2 logarithm and $\lfloor \rfloor$ is the lower-rounding operation, so that $\lfloor x \rfloor$ is the largest integer not larger than r.

Exercise 7. Suppose a person's full name is composed of either

- a first name and a last name or
- a first name, a second name and a last name or
- a first name, a second name, a third name and a last name.

Moreover, there are 88799 different last names, and there are 4275 different female first names and 1219 male first names¹. The second and third names of a person are taken from the same set as his/her first name. Let \mathcal{L} , \mathcal{F} and \mathcal{M} be the sets of last, female first and male first names, respectively.

- a) Define the set full names, using the sets \mathcal{L} , \mathcal{F} , \mathcal{M} and usual set operations such as union, intersection, complement, cross product etc.
- b) How many distinct full names are there? Justify your answer.

Exercise 8. In a deck, there are 32 cards. Each card is of one of four possible suits and one of eight possible kinds, so that the deck can be identified with the set

$$\mathcal{D} = \{(s,k) \mid s \in \{1,2,3,4\}, k \in \{1,...,8\}\}.$$

A hand of eight cards is a set of eight distinct cards of the deck, i.e. the order of the card does not matter.

- a) Define the set of hands of eight cards using the set builder notation.
- b) How many different hands of eight cards are there? That is, what is the cardinal of the set of hands of eight cards. Justify your answer.
- c) How many different hands of eight cards are there in which all cards are of the same suit. Justify your answer.

¹Source: U.S. Census Bureau http://www.census.gov/genealogy/names/.

Example. Proof by induction.

Suppose we are given the facts

For all natural number n, let x_n be a real number. Let

(8.1) $x_1 = 1$

and, for all $n \geq 1$, define

 $x_{n+1} = x_n + \frac{1}{3}.$ (8.2)

This means that

- a) there is an infinite sequence of real numbers, where the $n^{\rm th}$ number is called
- **b)** The first number of the sequence is 1.
- c) I know that the $(n+1)^{th}$ number in the sequence is equal to the n^{th} number

Typically, we will want to compute the first few numbers in the sequence:

$$x_2 = x_1 + \frac{1}{3} = \frac{4}{3} \simeq 1.333, \ x_3 = x_2 + \frac{1}{3} = \frac{5}{3} \simeq 1.666, \dots$$

If I am asked the question

Show by induction that

$$(8.3) \forall m \ge 1, x_m = \frac{2+m}{3}$$

this means that I should show that

for all natural number m greater or equal to 1, x_m is equal to $\frac{2+m}{3}$

or, put in still another way

for all natural number m greater or equal to 1, the statement $x_m =$ $\frac{2+m}{3}$ is true.

So, given the facts in Equations (8.1) and (8.2), I must be able to prove that, indeed, Equation (8.3) is true. Note that this is a property of all natural numbers. How do I show that? In three steps:

- a) Give a name, e.g. $P\left(m\right)$ to the statement that I want to prove for any
- number $m \ge 1$. In this case, P(m) is the statement $x_m = \frac{2+m}{3}$. b) "Basis step": I show that the statement P(1) is true. That is², show that
- c) "Inductive step": I show that if, for some $k \geq 1$, the statement P(k) is true³, then the statement P(k+1) is also true⁴.

²Since $P(m) \equiv x_m = \frac{2+m}{3}$.

³That is, the statement $x_k = \frac{2+k}{3}$ is true.

⁴That is, $x_{k+1} = \frac{2+(k+1)}{3}$ is also true.

4

My answer will consist of

Define the statement P(m) to be:

$$P\left(m\right) \stackrel{\Delta}{\equiv} x_m = \frac{2+m}{3}$$

In order to prove by induction that P(m) is true for all $m \geq 1$, it is sufficient to show

Basis step. P(1) is true. This is true because $P(1) \stackrel{\Delta}{\equiv} x_1 = \frac{2+1}{3}$ by definition of P() and $x_1 = 1 = \frac{2+1}{3}$ by assumption^a.

Inductive step. Assume that, for some $k \geq 1, P(k)$ is true, i.e. one has

$$x_k = \frac{2+k}{3}.$$

One also has b

$$x_k + \frac{1}{3} = \frac{2+k}{3} + \frac{1}{3} = \frac{2+(k+1)}{3}.$$

 $x_k + \frac{1}{3} = \frac{2+k}{3} + \frac{1}{3} = \frac{2+(k+1)}{3}.$ Moreover, by definition^c of x_{k+1} this expression is also equal to x_{k+1} , so that one has:

$$x_{k+1} = \frac{2 + (k+1)}{3}.$$

This statement is P(k+1), which is thus deduced from P(k).

See also the examples of the textbook [1], pp. 240 onward.

References

[1] K. H. Rosen. Discrete Mathematics and Its Applications. Mc Graw Hill, 5 edition, 2003.

^aThe assumption mentionned here is Equation (8.1). The footnotes are not part of the answer to the

 $[\]hat{b}$ By adding $\frac{1}{3}$ to both sides of this equation. ^cThis is Equation (8.2).