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Abstract

We consider the problem of estimating the relative origotedf a number of indi-
vidual photocells -or pixels- that hold fixed relative pasis. The photocells measure
the intensity of light traveling on a pencil of lines. We asmuthat the light-field thus
sampled is changing, e.g. as the result of motion of the sermswl use the obtained
measurements to estimate the orientations of the phasocell

Our approach is based on correlation and information-thdasimilarity mea-
sures. Experiments with real-world data show that the whig¢asiity measures are
strongly related to the angular separation between theopbli$, and the relation can
be modeled quantitatively. In particular we show that thisded allows to estimate
the angular separation from the dissimilarity. Althougb tlesulting estimators are
not very accurate, they maintain their performance througtifferent visual environ-
ments, suggesting that the model encodes a very generamya our visual world.
Finally, leveraging this method to estimate angles fronmaigairs, we show how
distance geometry techniques allow to recover the compésisor geometry.

1. Introduction

Early experiments in psychological research, such as theda experiments with
the prism and the inverted glasses [16, 32, 31], revealddrthah of the geometry of
the human’s vision is known beforehand and is saved in thm la®imaging expe-
riences. In particular, those psychological experimehtsv&d that a person wearing
distorting glasses for a few days, after a very confusingdistlirbing period, could
learn the necessary image correction to restart inteaeffiectively with the environ-
ment.

This amazing learning capability of the human’s vision egsiclearly contrasts
with current calibration methodologies of artificial visisystems, which are still strongly
grounded to the a priori knowledge of the projection mod€lalibration is typically
bootstrapped by using some basic properties of the imagstg®. In particular, in all
the cases that we are aware of, the local topology is knowe fi, j) is a neighbor of
(i +1,7); the triplet(i, 5), (i + 1, ), (¢ + 2, j) is approximately aligned. It is possible
to detect and localize edges, extrema, corners and featuwesalibrated images, just

1This work was partially supported by TYZX, Inc, by the Poriege FCT POS_C program that includes
FEDER funds, and by the EU-project URUS FP6-EU-IST-045 062

Preprint submitted to Elsevier April 1, 2009



Center of
projection

Figure 1: A discrete camera consists of a number of phow®(aikels) that measure the light traveling along
pencil of lines. More generally, one could consider thathegicotocell is characterized by a point spread
function defined on the 3D sphere.

as well as on calibrated images. In short, it is undenialde ldcally, and for many
practical purposes, an uncalibrated image looks just ligali@rated image.

This paper departs from traditional computer vision onploigit: we do not assume
that pixels(i, j) and(i + 1, j) are neighbors. In fact, we are given pixels indexed by
a single index. Since such a camera is peculiar by the absence of a-priovkn
topological information, it is only natural to call itdiscontinuousor discrete camera

The problem that we address is to determine the geometryisteete camera that
produced a stream of valueqi, t), where the integer indekdenotes the photocell
or pixel, andt, the time. This problem may seem too general to pertain topcien
vision. Indeed, digital cameras are unlikely to ever praddiscontinuous imagés
Yet we must also consider the computation that occur in iokd systems, where it is
unclear how much of the geometry of the sensor is known beéoré, and how much is
determined by processing visual stimuli. We must also amrgiobots equipped with
arrays of photocells, and new visual sensors [28] that mag tariable geometry.

Our goal here is thus to determine the 3D direction pointe@dxsh pixel, under
the assumption that pixels sample light that travels alayg that intersect in a unique
center of projectior(see Fig. 1). In the impossibility of performing local image-
cessing, traditional calibration techniques [34, 12] areaf the question.

Less traditional non-parametric methods that assume atbrmoage mapping and
smooth motion [20, 10] can obviously not be applied eithgruBing controlled-light
stimuli or known calibration, matches could be obtainelbyveihg to use match-based
non-parametric techniques [25]. In the technical repdlit #6non-central projection
sensor samples the light-field in a discontinuous way: tlspamse at each pixel is
the convolution of the lightfield with a possibly multimodahction (this point is not
mentioned explicitly); this “point-spread function” is lgrsufficiently estimated to re-
construct images on a fixed plane, and calibration is donke edhtrolled stimuli. In
this study however, we wish to exclude known calibratiorect§ and other controlled

2Except in rare cases such as a camera with a stereo adappdit origor.



stimuli.
Given the problem, a mixture statistical signal processing geometry seems the
most natural approach and this is indeed how we proceed.

1.1. Related work

Our approach to calibration is closely related to the worRiefce and Kuipers [23],
who measure the dissimilarity, or distance, between sezlsarents that are not nec-
essarily light sensors. The elements are then embedded &tri ispace using metric
scaling [17], which also determines the dimension of thespa relaxation method
then improves this embedding, so that the Euclidean disthatween sensor elements
better matches the dissimilarity between the sensor inpaetting very close to the
problem addressed in the present paper, the authors usedtiied to reconstitute the
geometry of a rectangular array of visual sensors that scénmmto-parallel image.

Going further, Olsson et al. [21] use the information metrid4] as a more ap-
propriate method to measure the distance between visuaher eensor elements.
They also show how visual sensors -the pixels of the cameaarasbile robot- can be
mapped to a plane, either using the method of [23], or their,dthat embeds sensor
elements specifically in a square grid.

The works of Olsson et al. and of Pierce and Kuipers are veeyasting to com-
puter vision researchers, but they cannot calibrate atrarpidiscrete camera, since
the geometry of the embedding space is either abstract artfixe grid. In either case,
it lacks an explicit connection to the geometry of the senBdling this gap is one of
the motivations for the present work.

Since the present work exploits statistical propertieheflight-field of the world
surrounding a light sensor, this article is also relatect®arch on the statistical prop-
erties of real-world images [13]. In this field a theoretiframework which is gaining
more and more support considers the properties of the \eggt#m to be reflections of
the statistical structure of natural images, because dfitgnary adaptation processes.
Our approach is similar in spirit, trying to replicate thegticity of the visual system
of biological systems. That research has put in evidencdaomental properties, in
terms of local, global and spectral statistics, of realfd/images, that has been also
exploited for computer vision tasks, such as classificq3®}, image restoration [7]
and 3D inference [24].

Although these results are of great interest, they are mettly applicable in our
case, mainly because we lack images.

Moreover, these statistics are about images formed on aipilaage plane, which
is a hindrance in our case: first, we do not want to exclude #ise of visual sensor
elements that are separated by more than 180 degrees, shehimsreasingly popular
omnidirectional cameras. Also, the local statistical femies of perspective images
depend of the orientation of the image plane with respettdstene, except in special
constrained cases such as the fronto-parallel “leaf warfdVu et al. [35]. Defining
images on the unit sphere thus appears as a natural way teriemfe statistics inde-
pendent of the sensor orientation, at least with propemagsans on the surrounding
world and/or the motion of the sensor.
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Figure 2: The process of estimating the geometry of an unkrdiscrete camera.

Algorithm 1 Procedure for estimating the geometry of a discrete camera.

Input: Signals produced bw rigidly connected light sensors &t time instants:
z(i,t),1 < i < N,1 <t < T. The light sensors are rigidly connected
and point towards unknown 3D directiofy, ..., Xy, X; € R3, X TX = 1.

Output: Estimates of the directionk, ..., Xx.
Algorithm:

1. Estimate the distaneg; between the temporal signatgs, .) andz (j, .),
foreachl <i,j < N.

2. Estimate the angular separatiohs= cos (X, X;).

3. Embed the angular separation in the 3D sphere: Had..., Xy s.t.
X;Xz = l,XzTXJ :cos(Oij), 1 S Z,j S N.

1.2. Proposed approach

In the present work, we assume that the statistical pragzeaf the data streams
produced by pairs of sensor elements depends only on thdsausgparation between
the elements. This assumption, when one considers the gragebservations of a
random field defined on the sphere, is equivalent [26] to asgpthat the random
field is homogeneous- we could say “isotropic” to use the common image processing
vocabulary.

This assumption of homogeneity clearly does not hold in ascaropic world,
unless the orientation of the sensor is uniformly disteluamongst all unitary trans-
formations of the sphere. We thus adopt this last assumptioorder to ensure the
homogeneity of the observations. In terms of computer misiod robotics, our as-
sumption amounts to saying that the sensor is randomlytedeso that each photocell
is just as likely to sample the light-field in any direction.

The great practical utility of this assumption is that, a®asequence, the statisti-
cal properties of a pair of data streams generated by twaphbté depend only on the
angle separating them. In this situation, one can envistmating the angular separa-

3The definition of a homogeneous random field defined on therggigi¢hat the covariance between two
random variables sampled at two locations of the spherendispanly on the angular separation between the
two points and that the expectation does not depend on thelisgniocation



Figure 3:Left: The camera used to sample omnidirectional images (imagenad). Right: A calibrated
omnidirectional image mapped to a sphere.

tion from a measure of dissimilarity (e.g. correlation doimation distance) between
the streams, and this is precisely what we do (Sec. 3). Irr dodestimate angles from
dissimilarity measures, we empirically observe the retatietween these two quan-
tities. We may then (Sec. 4.1) embed these angular estimaieg techniques from
distance geometry [5]. The whole process is outlined in Feguand Algorithm 1. Fi-
nally Sec. 5 presents some conclusions and a list of quedtidre addressed by future
research.

This work is the continuation of [11] and also includes sorh#he improvements
brought by our previous work [9]. In the latter, it is showratta metric between
signals based on the correlation can just as well be usadaith®f a metric based on
information distance. The embedding method used in [9]$&dieed more thoroughly
in the present paper, allowing others to reproduce ourtesdre easily.

2. Discrete camera model

Before entering into the details of our methodology forrasting the sensor ge-
ometry, we define the discrete camera and explain how to ateitlusing an omnidi-
rectional image sensor.

We define adiscrete cameras a set ofV photocells indexed by € {1,..., N},
pointing in directionsX; € R3. T, on the number of pixeld’, acquiring along time,
brightness measurementsi, ¢) in the range{0, . . ., 255}. The directions of the light
rays, contrarily to conventional cameras, are not neciégsaganized in a regular grid.
Many examples of cameras can be found under these definiti@ms example is the
linear camera, where all th€; are co-planar. Another example is the conventional per-
spective camera which comprises a rectangular grid of gledtothat are enumerated
in our model by a single indei

{Xi|Xi~K_1[ L } 0§i<HW}

whereW, H are the image width and heighk{ is the intrinsic parameters matri%;
represents the integer modulo operation ands the lower-rounding operation. Cam-



eras equipped with fisheye lenses, or having log- polar sensan also be modeled
again by settingX; to represent the directions of the light-rays associateédg¢dmage
pixels. In the same vein, omnidirectional cameras haviriggles projection center, as
the ones represented by the unified projection model [8),féls the proposed model.
In this paper we use a calibrated omnidirectional cameréntalate various discrete
cameras.

2.1. Simulated image sensor

We simulate a discrete camera with known Euclidean georbgtsampling a cal-
ibrated panoramic image with unique projection center adfibocations. Since the
camera is calibrated, it is straightforward to locate thsitpan (u, v) in the panoramic
image corresponding to the 3D directiofy of a photocell that is part of the simu-
lated discrete camera. In the present work, we use biliméardolation to measure the
graylevel value at non-integer coordinatesv).

Images are acquired by a VStone catadiopric camera congistia perspective
camera fitted to a hyperbolic mirror, shown in Figure 3, [&ftis system is modeled as
single projection center camera [8] witl860° x 210° field of view and a~ 45° blind
spot at the south pole (Fig. 3, right). The mirror occupid$ax 453 pixel region of
the image. The angular separation between neighboringspixéhe panoramic image
is usually slightly smaller than (25 Also, some mild vignetting occurs, that could be
corrected. Apart for these minor inconveniences, simudgéi discrete camera by an
omnidirectional camera presents many advantages: no sleeialized hardware is
needed and each omnidirectional image can be used to sexméaty discrete camera
“images”, as in Fig. 4 (a). With respect to perspective camethe available field of
view allows to study very-wide-angle discrete cameras.

2.2. Data acquisition

For the purpose of studying the effect of angular separatignint photocell signal
statistics, we use the 31-pixel planar camera (or “probeds in Fig. 4 (b). This
probe design allows to study the effect of angular separatianging from 0.5 to 180
degrees and each sample provides 465=31(31-1)/2 pixal. daithe “tighter” part of
the discrete camera layout, there exists a slight lineaen@gnce between the values
of consecutive pixels due to aliasing.

The camera is hand-held and undergoes “random” generéibiotnd translation,
according to the author’s whim, while remaining near thedieiebf the room, at 1.0
to 1.8 meters from the ground. We acquired three sequencegcuatively, in very
similar conditions and joined them in a single sequencdingtd 359 images, i.e. ap-
proximately 5 minutes of video at 4.5 frames per second.

To simulate the discrete camera, we randomly choose antatiem (i.e. half a
great circle) such that all pixels of the discrete cametairfathe field of view of the
panoramic camera. Figure 4 (b) shows two such choices ofitatiens. For each
choice of orientation, we produce a sequencglofamplese (i,t),1 < i < 31,1 <
t <1359, where each: (i,t) € {0, ...,255}. Choosing 100 different orientations, we
obtain 100 discrete sensors and 100 arrays of data. Appegtitkse arrays we obtain
31 signalse (4, t) of length to 135900.
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(b) Linear discrete sensor

(c) Four images from a sequence of 1359 for calibration I&zgn

Figure 4:(a)Two instances of the linear discrete camera, inserted imamidirectional image. Pixels loca-
tions are indicated by small crosses connected by whits.liiip Geometry of a discrete camera consisting
of a planar array of thirty one (31) pixels, spanning 180the plane. The first two pixels are separated by
0.5°, the separation between consecutive photocells incregsenetrically (ratia~ 1.14), so that the 3t
photocell is antipodal with respect to the firgt) Four images of a set to be used for calibration learning.

Considering any pair of pixel (indice$)< 4, j < 31, the angular separatid@h; is
the main object to estimate by our method, and it is known intest setup. We define
in the next section two possible metri¢g, j) between signals(i, t) andz(j,t), 1 <
t < 135900 and, as a result, get a datag@tof angle-distance pairs:

We will then use this dataset to build a functional relatibattallows to estimate the
angular separatioy; from the information distanceé (, j).
3. Distances between pairs of signalsvs angular separations

In this section, we define the measures of distance betwgealsj namely corre-
lation and information distance, and use them to build ational relation between the
angle separations of photocells and the distances of gieglras they acquire.

3.1. Correlation distance
We call correlation distance between signals) andy (t), 1 < ¢t < T', the quantity

(1-C(z,y),

N~

de (z,y) =



whereC (z, y) is the correlation between the signals. It is easy to vehifigd. (., .) is
a distance.

For the task considered in this paper, it is natural to préfeicorrelation distance
over the covariance or the Euclidean distatice- y||, because both vary with signal
amplitude (and offset, for the latter), where&s., .) is offset- and scale-invariant.

3.2. Information distance

Given two random variablesandy (in our case, the values produced by individual
pixels of a discrete camera) taking values in a discret¢Iset ., Q}, theinformation
distancebetween: andy is [4]:

d(z,y) = H(zly)+H (ylr) = 2H (z,y) — H (y) — H (z), 2)

whereH (z,y) is the Shannon entropy of the paired random variéblg), andH (x)
and H (y) are the entropies of andy, respectively. It is easy to show that Eq. (2)
defines a distance over random variables. This distanceusdsnl byH (z,y) <
log, @, and can be conveniently replaced by ttremalized information distance

d(x,y):d(x,y)/H(x,y) )

The advantage of (3) over (2) is that its properties are morariant toQ: Eg. (2) is
bounded bylog, @ and is not necessarily equal to its upper bound whemdy are
independent. In contrast, Eq. (3) is boundedibgdependently of) and is exactlyl
if and only if z andy are independent [4].

3.3. Estimating the information distance

Caution should be taken when estimating the informatiotadie (3) from finite
samplese (¢), y (¢), 1 < t < T: itis relatively common knowledge that replacing
unknown probabilitiew,, (¢) by sample frequencies, (¢q) = [{t|z () = ¢}| /T* in
the expressions of the entropy results in the bigdad-in estimatorH (z), with ex-

pectancy Iy
5 Q-1 " Z<ap.(@) L
E{H}_H T +O(T3). (4)
This bias in turn causes a bias in the information distanimates in Eq. (3). While
correcting for the first bias terf@) — 1) /27, is easy and results in the Miller-Madow
estimator, correcting for the other terms is more delica®.[In addition to the plug-in
and Miller-Madow estimators, we also consider here theregtr of Paninski [22].

A first consideration in the choice of estimators is the nunabdins ). Since the
bias decreases slowly and is to a large extent proportion@| it is advantageous to
re-quantize the signals from 256 graylevels to a more pansious representation with
@ < 256 bins. When re-quantizing signals for estimating their infation distance,
we found a slight advantage in choosing bins that maximieeetitropy, i.e. bins that
contain equal numbers of values. All signal re-quantizsitiothis paper is done using
this scheme, also used in [21].

4].| denotes the set cardinal.
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Figure 5: Each of these plots shows how bias of various egimn& affected by signal length. Each curve is
the average of 150 information distance estimates, takemelea signals generated by photocells separated
by approximately 5 degrees. The signal length is varied fi@%9 to 43488. A good estimator is one
for which the mean value changes little with the signal langEhe three considered information distance
estimators are: the plug-in estimator, the Miller-Madowreoted estimator and Paninski’s estimator.

In order to choose a suitable estimator of the informatigtedlice, we first consider
the stability of each estimator with respect to signal langn Fig. 5, each curve is the
average of 150 information distance estimates, taken leetsignals generated by two
photocells separated by approximately 5 degrees, wheighal $ength varies approx-
imately from1350 to 43500°. The leftmost curve shows that, f@r = 4, all estimators
behave pretty well, although the asymptotic value appeaaedlsr than with > 4
(two plots at right). This last effect results from the infation lost in quantization.
For(@ = 16, the middle curve shows that Paninski's estimator is ssgddet not much
more than the Miller-Madow estimator, while the plug-iniesttor is clearly far from
its asymptotic value when the signals length is 1350. Amé&dr Q = 64, the right-
most curve shows the trend of the previous curve greatlyeased: ag) increases,
the termQ? in the bias expression fdi (X,Y) or H (X|Y) in Eq. (2) becomes more
important and more samples are needed to reduce it. Not shothiese curves, the
standard deviations of all three estimators are comparable

From the previous result, the Miller-Madow estimator appdite a good choice,
due to its relatively good performance, and to the fact thati§ very easy to compute.
In contrast, the Paninski estimator requires the comprtadf a table of same length
as the signal, which renders it impractical with signalsarfiable length.

In order to further assess the advantage of the Miller-Madstimator over the
plug-in estimator, we show the results of other experimpetéormed by varying)
and the angular separation between the photocells.

Figure 6 shows the average information distance Eq. (3) dmtvwthe outputs of
sensors with known angular separation. Each plot holdsdorwes, corresponding to
Q = 2,4, 16 and 64. The left plot uses bias correction, whereas g plot does
not. The curves in the left plot are better grouped, showhag, tvhen bias reduction is
applied, the information distance estimates depend leg3. drhis is important if one
is interested in estimating properties of the informatittahce that depend on angular
separation and on the ambient light field, rather tha®)andT'.

5In order to obtain signals of length greater tHat%9, the original length of our signal, we concatenate
many signals corresponding to different sensor orientatio
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Figure 6: Dependency of the information distamb@, ;) on the angular separatidh;. The height of each
plotted point is the average of 100 estimates of the infaomatistance between signalgi, 1 < ¢ < 1359)
andz (5,1 <t < 1359). The abscissa is the angular separations between pixeld j of the discrete
camera. Each curve corresponds to a different nurgbef quantization bins. The quantization bins are all
taken to have weight/Q. Right: Information distances computed with the first-order biasemtion term

of Eq. (4) removedL eft: Distances computed without correction.

The conclusion of these experiments is that adding the fostection term in
Eq. (4) to entropy estimates in Eq. (3) is justified and berafiespecially when only
short sequences are available. For the above reasons, Ingswithe Miller-Madow
estimator in the sequel, and uge= 4 bins, which is appropriate for short sequences.

One should note that correcting for bias in the entropy estshis less important
in the situation of Olsson et al. [21], where the distancesussments are embedded
directly in an abstract space. Obtaining accurate infaonatistance estimates is im-
portant in our approach because our goal is to accuratelyimi@apnation distance to
angles.

3.4. Estimating angular separations from inter-signaltdisces

As explained earlier, our a-priori knowledge of the worldl\we encoded in a func-
tional relation mapping a measure of discrepancy betweersignals, to the angular
separation between the photocells that generated thelsighta now build this func-
tional relation and assess its effectiveness at estimatigées.

In the previous section we detailed the computation of tetadces between pixel
streams, and therefore completed the construction of thkesiand distances dataset
D (Eqg. 1). From this dataset, we can finally build a constant émspmodel of the
expectancy of the distance knowing the angle. After vemifyand, if needed enforcing,
the monotonicity of this model, we invert it, obtaining a ghaof anglesd as a function
of (correlation or information) distances,

0 = F(d) (5)

Strict monotonicity has to be enforced for the correlatimsed data, owing to the
relatively small number of data points used for each quadtangle.

Figure 7 shows the resulting graphs. This figure shows onbaefrtajor issues
that appear when estimating the angular separation betwieels from the correlation
or information distance: the graphs become very steep fgelegalues of the distance,

10



Correlation-Distance-to-Angle Model Information-Distance-to-Angle Model
120 120

100 100

80 l
60 /
40

80

60

Predicted Angle
Predicted Angle

40

20 20
i — i //
0 0.1 0.2 0.3 0.4 0.5 0 01 02 03 04 05 06 07 08 09 1
Correlation Distance Information Distance

Figure 7: Models relating correlation (left) or informatialistance (right) to angular separation between
photocells. These models were build from simulated sigpatsiuced by the linear probe of Fig. 4(a).
Signals of lengtil” = 135900, acquired indoors were used.

indicating that small changes of the distance result irdatganges in the estimated an-
gle. Hence, a small uncertainty in the estimated distanpdiésa large uncertainty in
the estimated angle. This problem is somewhat mitigatettidicase of the correlation
distance, by limiting the abscissa to valy@és1/2]. For small distance values, on the
other hand, the curves are much flatter, suggesting that anglés can be determined
with greater accuracy. Both trends are particularly trugtie information distance.

3.5. Experimental validation

We now assess how well angles can be estimated from the gobpdiged in the
previous section. As described in Sec. 2.2, we collect irh eaanidirectional im-
age the samples necessary to simulate 100 discrete linesorseeach one having 31
photocells (100 times 31-tuples per image). For each 3fe-nifpsignals, we estimate
the 31 - 30/2 correlation and information distances between pairs ofaigand map
these distance to angles using the models of Fig. 7. We aeegsality of the angle
estimators by comparing these estimated angles with thekitraie angles.

Figure 8 (a) and (b) show the boxplots the 100 estimated anglesus the true
angles for the correlation- and information-based estinsatespectively. These plots
show that the true angles are well estimated for small anglage the spread and
apparent bias of the estimators increases sharply for amgésater than five or ten
degrees.

Figure 8 (c) and (d) better illustrate this trend: Figure Bflots the mean esti-
mated angle versus the true angle. This figure shows thastimeators are essentially
unbiased until five degrees and that they underestimatesuadfer that. Figure 8 (d)
plots the mean absolute error in the estimated angles.

Figure 8 shows how the proposed angle estimators perfornigmals produced
in the same conditions of environment and motion as the Egsed to build the
correlation and information distance-to-angle modelac&iwe will want to use these
estimators in other situations, we must also evaluate ffegformance in more general
conditions.

11
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Figure 8: Validation of the distance-to-angle models ofiFgj7. Boxplots (a) and (b) show thg%ercentile,
first quartile, median, third quartile and@EpercentiIe of 100 angles estimated from signals of lefgts
1359 simulated using the indoor sequence of Fig. 4 (c). The armgkegstimated from information distance
in (a) and correlation in (b). The curves in (c) show the mestimated angle v.s. the true angle, and (d)
shows the mean absolute error in the estimated angles.

Figure 9 shows how the proposed angle estimators perfornigmals captured
outdoors and indoors by the same camera setup as above. irfibjstlhe camera is
held mostly horizontally, but the virtual discrete camestil have pretty random ori-
entations, owing to the very wide field of view. Four of the 93rhages are shown in
Fig. 9 (a). Again, we sampled 100 time 31-tuples of pixelieal per image and com-
pared the true angles with the angles estimated using tlelation and information
distance based estimators.

Figure 9 (b) shows the mean of the 100 estimated angles, Higil® (c) shows the
mean absolute error. This figure shows that, globally, ttienasors actually perform
better on this dataset than on the dataset acquired in the camditions used to build
the estimators.

Using the same outdoors and indoors sequence, but sampliimphtal virtual
cameras allows to evaluate the performance of the anglaastis when the assump-
tion of uniform sensor orientation is violated. Since themeaa was mostly horizontal
during the capture of the outdoors and indoors sequencegoBfFand the virtual sen-
sors sampled in the present experiment remained horizdahtse virtual sensors in
effect have a very restricted set of orientations.
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(a) Four images of a sequence for testing the calibrationhoatlogy.
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Figure 9: (a) Four out of 2349 images of an outdoors and irglsequence used to validate the angle
estimators. (b) Mean of 100 sets of angles estimated frosnstijuence, plotted versus the true angle. (c)
Mean absolute error in the estimated angles.

Nevertheless, Fig. 10 shows that the signals captured getbenditions allow to
estimate angles with an accuracy that is less good thanftkég.c®, but not much less
good. One should note that the mean estimated angle is abwmagher than the true
angle. This seems to indicate that the correlation is grdsgteveen signals obtained
by sampling along the horizon.

Finally we go a step further in testing the generalizatioifitglof the proposed
angle estimators. We now use different sensor, point-&ioedtsOlympus Stylus 300
camera that can acquii&0 x 120 videos at~ 15 frames per second. Multiple se-
quences of typically 1050 images (70 seconds) were takeronscind outdoors, while
the camera was moving, predominantly horizontally and &vdybut also with differ-
ent orientations. The horizontal and vertical fields of viesver 50 and 35 degrees,
respectively. These sequences were concatenated, foansingle sequence of 22822
images. Figure 11 (a) show four of the images in the seque@twiously, this se-
guence does not allow to simulate a sensor with 180 degrefedabf view. In this
experiment, we use a linear sensor consisting of 31 phdsosghnning 35 degrees.
The first two pixels are separated by 9Q.fhe separation between consecutive photo-
cells increases geometrically, so that thétajhotocell is 35 degrees away from the
first.

Figure 11 (b) and (c) show the precision and accuracy of ttimated angles. This
figure shows that both estimators slightly overestimatéesgossibly due to the high
texture contents that is often present in the images. Theastr based on information
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Figure 10: Results of the angle estimators estimated frenséiguence of Fig. 9, but with the virtual linear
sensor kept mostly horizontal. (a) Mean of 100 sets of anglksted versus the true angle. (b) Mean
absolute error in the estimated angles.

distance performs somewhat better than that based on &tiorel

4. Calibrating a discrete camera

Having seen how to estimate the angle between two pixels fh@norrelation or
the information distance between their respective datasts, we now estimate the
whole sensor geometry from angle estimates. In this sectienproduce sequences
of pixel signals in the same conditions as in Sec. 2.2, exitgptthe sensor shape is
different. The distance between all pairs of signals ara #stimated, and the angu-
lar separation between the pixels are estimated using Séc.Rnally, these angle
estimates are embedded in the sphere using the algoritHinedié this section.

4.1. Embedding points in the sphere

The last step in order to solve the discrete camera caldratioblem will be taken
by solving the problem:

Problem 1) Spherical embedding problem: Given angle estimate®;, 1 < i,j <
N, find pointsX; on the unit sphere, separated by angles approximately egual
Gij, i.e. XzTXJ ~ COS Qij, for all 1, ]

This problem can be reduced to the classical problem ofritistgeometry [5]:

Problem 2) Euclidean embedding problem: Given distance estimatés;;, 1 < i,j <
N, find pointsY; in a metric vector space, such that, foriall, ||Y; — Y;|| ~ D;;

Indeed, by defining an extra poik = (0, 0,0), and distance®,; = /2 — 2 cos 6,
the mapping of the first problem to the second is immediate.
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(a) Four images from a sequence of 22822 for testing the reaidn methodology.
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Figure 11: (a) Images 300, 8400, 11300 and 13100, in a set3%2@nages acquired with an off-the-shelf
digital camera. (b) Mean of 100 sets of angles, plotted wetise true angle. (c) Mean absolute error in the
estimated angles.

4.2. Factorization method

Solutions to both problems (with exact equality, rathemtlapproximate) were
published by 1935 [28] Schoenberg’s Theorem 2 [29] states that if the matrixith
termsC;; = cos 6;; is positive semidefinite with rank > 1, then there exist points on
the unit(r — 1) —dimensional sphere that verify,” X; = C;; for all i, j. This result
directly suggests the following method for embedding mintthe 2-sphere:

1. Build the matrixC' with termsC;; = cos ;5,1 <i,5 < N.

2. Compute, using the SVD decomposition, the rank-3 apprationC = UU "
of C, wherelU is N x 3. In essence, this involves square-rooting the three larges
singular values o” and using them to scale the first three components of the
left singular values.

3. DefineXi = (Uila Uig, Ui3) / ||(Ui1, Uig, Ul3)||

In the absence of noise, this very simple algorithm giveg#aet solution, up to a uni-
tary transformation. When there is noise, however, it isaptimal in many ways. In
particular, it does not take into account the structure efhproximately multiplicative
noise in the angles;;.

6Schoenberg cites [15] and [19] as, respectively, previolisions to Problems 1 and 2. These are the
earliest references we are aware of.
"Using Matlab/Octave notation: [u, s, v] =svd(C); U=u(:, 1:3)*sqrt(s(1:3,1:3))

15
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Figure 12: True and estimated pixel layouts of a discretestaroonsisting of photocells lying on a triangular
grid. To estimate the layout, each pixel was sampled 1358gtinihe information distance between pairs of
pixels was estimated from these values, and converted tdamgstimates using our non-parametric model.
The angular distances were then embedded in the sphere.isealization, they are aligned by the usual
procrustes method, mapped to the plane by projective mgpgitin unit focal length, and line segments

indicate the original pixel neighborhood relations.

In practice, this algorithm is very sensitive to noise: Fig.shows the results of
the reconstruction, when the pixels lie on a triangular gfithe image plane, scaled
so that the angular diameter of the whole discrete camera(ieft), 10° (middle) or
20° (right). Please note that the lines connecting the phadtpositions serve only to
better illustrate the correspondence.

The reconstructed grids shown here are typical of what reBees reproducing
our method may encounter. It is easy to see that for smathekier discrete cameras,
the estimated shape is pretty well determined by the infonalistance between the
pixel streams, whereas, when the angular diameter insggenoise in the estimated
angles gradually overwhelms the embedding algorithm.dbiemon for the factoriza-
tion method to break down with sensors20f diameter or less [11].

A different method is thus needed if we wish to obtain betsdibcation results. Itis
easy to verify that this situation is not directly tractabievariable-error factorization
methods used in computer vision, such as [14]. In the nexioseave will define and
validate a more performant algorithm.

4.3. Robust nonlinear embedding method

Noting that the error in the estimated angles is approximgmportional to the
actual angle suggests that the embedding method shouldh\esig heavily large an-
gular estimates.

One such method is Sammon’s algorithm [27], which we adagjhterical -rather
than Euclidean- embedding. In this paper, we minimize thighted sum of the dif-
ferences of the angle estimates with the internal proddasections:

X = argmin Zwi,j (XiTXj - Cij)Qv 6)
X %]
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Algorithm 2 Spherical embedding

Input: Distance matr® with termsf,;, 1 <4,j < N, 6,; € [0, 7]
Output: Embedded pointX;, 1 < i < N on the unit sphere.

1. Compute the minimum spanning tréeof O.
2. Select the tripleti, j, k) of points such thati, j) € 7, (i, k) € 7 and the
spherical anglgik is maximized.
3. ChooseX;, X; and Xy, s.t. X;' X; = cos (0;;), X, X = cos (0;x) and
X]TX;c = cos (01).
4. Define the set of already embedded polhts {i, j, k}.
5. Define the set\' of neighbors of B that are not inB: N =
{i|35€B, (i,j)eT}.
6. For each elemeritin AV, taken from the closest 8 to the furthest:
7. Findj € Bs.t. (4,5) € 7 andk € B that maximizes the spherical
anglejik.
8. TriangulateX; from 6,; andé;;, (disambiguate using other points of
B).
9. UpdateV := N\ {i}, B := BU {i}.
10. End while
11. If B# {1...N}, then goto 5.

whereX = {X;, Xo,--- ,Xn} and

wij = 113 o

" otherwise

To reflect the fact that big angles are less well estimatedset€’; = 0.9, so that
estimates greater than ag0s9) ~ 25° be ignored. The other parameterjs set
to 1, allowing the pointsX; to stray a little bit away from the unit sphere. Our im-
plementation is inspired by the second-order iterativehoetof Cawley and Talbot
(http://theoval . sys. uea. ac. uk/ ~gcc/ mat | ab/ def aul t . ht nl ). For initial-
ization, we modify the algorithm by Lee, Slagle and Blum [A8hich operates on the
plane, so that it operates on the sphere.

Combining Sammon’s algorithm to that of Lee, Slagle and Bkirot an unusual
practice for embedding in Euclidean space, e.g. [2].

The algorithm by Lee, Slagle and Blum works by steps, addimg point to a
set of already embedded points at each step, starting frofaregke. The embedded
points verify2 N — 3 of the original distance8;; exactly, i.e. the minimum number
of distances that uniquely define the positions offlpoints up to an isometry. The
algorithm has quadratic complexity .

In our case, the algorithm is adapted to embed in the unitrs@reV x N distance
matrix with termsf;;, 1 < ¢,5 < N, 6, ; € [0, x]. The algorithm is detailed in Algo-
rithm 4.3. It is easy to see that this algorithm favors usimglé angle estimates and
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Figure 13: Calibrations of two different sensors coveringrethan one hemisphere. On the left, a band-like
sensor consisting of 85 photocells, calibrated from cati@hs (estimated: smaller, true: bigger). On the
right, a discrete camera covering more than 860°, of 168 photocells, calibrated from the information
distance (estimated: smaller, true: bigger). Each ballesgmts a photocell except the big black balls,
representing the optical center.

ignoring larger ones: first, in step 1, the edges that aregfahte minimum spanning
tree are by nature short (for example, the nearest-neigitaph is a subgraph of the
minimum spanning tree). Then, when adding a point to th@s#talready embedded
points (step 7), this is done by triangulating with two peinf B that are necessarily
close to the added point. Also note that the aU@bin step 7 cannot be greater than
7 /3, by definition of the minimum spanning tree, and the triangled to localize the
newly added point is far from a degenerate configuration. dditgon to the useful
properties just mentioned, this algorithm is simple to iempént.

4.4. Testing the generality of the method

We now evaluate the results of the complete calibration oditogy, and in partic-
ular the robust embedding algorithm on data produced byrigkeeestimating method
of Sec. 3.4. In this section we test two main cases: (i) catibg non planar discrete
cameras having enlarged fields-of-view, using the sameeénaaguisition device de-
scribed in Sec. 2.1, and (i) calibrating a rectangularmigccamera, but based on a
different image acquisition device, namely a (consumegitalicamera.

Calibration from an indoors-and-outdoors sequendéie main objective here is test-
ing the calibration of large fields-of-view while using dattion images that have com-
pletely different illuminations and textures (as compa@ihdoors image datasets).
For this purpose, we produce sequences of pixel signaleisame conditions as pre-
viously, using the outdoors and indoors sequence shownginda), except that the
discrete-sensor shape is different. The information amcetadion distances between
pixels is then estimated from these signals, the angularagpn between the pixels
is estimated using Sec. 3.4, and the embedding method ofiSeis applied to these
angle estimates.

Figure 13 shows the results of our calibration method on@ensovering more
than a hemisphere, which thus cannot be embedded in a plameutvsignificant dis-
tortion. It should be noted that, although the true senseadh time more than hemi-
spheric, the estimated calibration is in both cases smalleis shrinkage is a known
effect of some embedding algorithms, which we could atteimporrect.
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Reconstruction using correlations (New sensor). Reconstruction using information distances (New sensor).
Signal length: 22822 Signal length: 22822
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Figure 14: Reconstructed and true pixel layouts of a disccaimera consisting of photocells lying on a
rectangular grid (a,b). The sensor used differs from th#ét which the models of Fig 6 were built. The
reconstructions are obtained by first estimating the pagwingular distances, then embedding the angles
in the sphere (see text). For visualization, the recontitmg are aligned by the usual procrustes method,
mapped to the plane by projective mapping with unit focagjtbn Added line segments show the true pixel
neighborhood relations. Plot (a) is obtained from the datien distance, and plot (b) from the information
distance.

Calibration using a different image sensdtigure 14 shows how our method applies
to signals produced by a different sensor from the one uséditd the distance-to-
angle models, namely an Olympus Stylus 300 camera. An 84xyd4@re grid pixels
spanning 34 degrees was sampled along a 22822 image sedakexeandoors and
outdoors. From this sequence, the estimated angles weerailgrgreater than the
true angles, which explains the absence of shrinkage. rehangle estimates were
possibly due to higher texture contents of the sequenceedtirated angles were also
fairly noisy, possibly due to the sequence length, and wexsgrthat longer sequences
would yield better results.

These results represent typical results that researaeducing our method may
encounter.

5. Discussion

This paper addressed the problem of determining the gegfetrset of photocells
in a very general setting. We have shown that a discrete @aoaar be calibrated to
a large extent, using just two pieces of data: a table regjdtiformation distances
to angles; and a long enough signal produced by the cameamain assumptions
are that the camera motion directs each pixel uniformly liiaéctions, and that the
environments in which the table is built and the one in whicé talibrated sensor
evolves are statistically similar.

Our algorithm proceeds in three main computational stegsfifgt estimate the in-
formation distance between each pair of signals. Thengusiore-built table relating
distances to angles, we transform the information dis&inte estimated angles. In
the final step we embed the angles in a sphere, with a metho@kies into account the
noise introduced by the estimation process. It should bedhibtat the first and third
steps are in themselves open problems that are the objeatai research [1, 3, 5].
In particular we adapted two embedding methods [18, 27] dntdimed an algorithm
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adapted for the approximately multiplicative noise in tlstireated angles. Experi-
ments on simulated sensors assess the validity of the prd@gproach.

As said above, we assumed an isotropic light field, which @edsily produced
manually moving the camera in any environment with enoughali stimuli. Drop-
ping this assumption might allow to calibrate, for examplesensor that is moving
mostly in one direction e.g. the eyes of a fly that mostly fl@sviard. It could also be
interesting to generalize the proposed method to calilardtscrete camera with a non-
central calibration model, e.g. an earthworm with eyesa#iraghe body. This poses
an immediate challenge, because describing the geomelaiion between two non-
intersecting rays requires four parameters, while a siagtge describes the relation
between two intersecting rays. Future work will address tiien problems.
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