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Abstract

We consider the problem of estimating the relative orientation of a number of indi-
vidual photocells -or pixels- that hold fixed relative positions. The photocells measure
the intensity of light traveling on a pencil of lines. We assume that the light-field thus
sampled is changing, e.g. as the result of motion of the sensors and use the obtained
measurements to estimate the orientations of the photocells.

Our approach is based on correlation and information-theory dissimilarity mea-
sures. Experiments with real-world data show that the dissimilarity measures are
strongly related to the angular separation between the photocells, and the relation can
be modeled quantitatively. In particular we show that this model allows to estimate
the angular separation from the dissimilarity. Although the resulting estimators are
not very accurate, they maintain their performance throughout different visual environ-
ments, suggesting that the model encodes a very general property of our visual world.
Finally, leveraging this method to estimate angles from signal pairs, we show how
distance geometry techniques allow to recover the completesensor geometry.

1. Introduction

Early experiments in psychological research, such as the famous experiments with
the prism and the inverted glasses [16, 32, 31], revealed that much of the geometry of
the human’s vision is known beforehand and is saved in the brain as imaging expe-
riences. In particular, those psychological experiments showed that a person wearing
distorting glasses for a few days, after a very confusing anddisturbing period, could
learn the necessary image correction to restart interacting effectively with the environ-
ment.

This amazing learning capability of the human’s vision system clearly contrasts
with current calibration methodologies of artificial vision systems, which are still strongly
grounded to the a priori knowledge of the projection models.Calibration is typically
bootstrapped by using some basic properties of the imaging system. In particular, in all
the cases that we are aware of, the local topology is known: pixel (i, j) is a neighbor of
(i + 1, j); the triplet(i, j), (i + 1, j), (i + 2, j) is approximately aligned. It is possible
to detect and localize edges, extrema, corners and featuresin uncalibrated images, just
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Figure 1: A discrete camera consists of a number of photocells (pixels) that measure the light traveling along
pencil of lines. More generally, one could consider that each photocell is characterized by a point spread
function defined on the 3D sphere.

as well as on calibrated images. In short, it is undeniable that locally, and for many
practical purposes, an uncalibrated image looks just like acalibrated image.

This paper departs from traditional computer vision on thispoint: we do not assume
that pixels(i, j) and(i + 1, j) are neighbors. In fact, we are given pixels indexed by
a single indexi. Since such a camera is peculiar by the absence of a-priori known
topological information, it is only natural to call it adiscontinuous, ordiscrete camera.

The problem that we address is to determine the geometry of a discrete camera that
produced a stream of valuesx (i, t), where the integer indexi denotes the photocell
or pixel, andt, the time. This problem may seem too general to pertain to computer
vision. Indeed, digital cameras are unlikely to ever produce discontinuous images2.
Yet we must also consider the computation that occur in biological systems, where it is
unclear how much of the geometry of the sensor is known beforehand, and how much is
determined by processing visual stimuli. We must also consider robots equipped with
arrays of photocells, and new visual sensors [28] that may have variable geometry.

Our goal here is thus to determine the 3D direction pointed byeach pixel, under
the assumption that pixels sample light that travels along rays that intersect in a unique
center of projection(see Fig. 1). In the impossibility of performing local imagepro-
cessing, traditional calibration techniques [34, 12] are out of the question.

Less traditional non-parametric methods that assume a smooth image mapping and
smooth motion [20, 10] can obviously not be applied either. By using controlled-light
stimuli or known calibration, matches could be obtained, allowing to use match-based
non-parametric techniques [25]. In the technical report [6], a non-central projection
sensor samples the light-field in a discontinuous way: the response at each pixel is
the convolution of the lightfield with a possibly multimodalfunction (this point is not
mentioned explicitly); this “point-spread function” is only sufficiently estimated to re-
construct images on a fixed plane, and calibration is done with controlled stimuli. In
this study however, we wish to exclude known calibration objects and other controlled

2Except in rare cases such as a camera with a stereo adapter or split mirror.
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stimuli.
Given the problem, a mixture statistical signal processingand geometry seems the

most natural approach and this is indeed how we proceed.

1.1. Related work

Our approach to calibration is closely related to the work ofPierce and Kuipers [23],
who measure the dissimilarity, or distance, between sensorelements that are not nec-
essarily light sensors. The elements are then embedded in a metric space using metric
scaling [17], which also determines the dimension of the space. A relaxation method
then improves this embedding, so that the Euclidean distance between sensor elements
better matches the dissimilarity between the sensor inputs. Getting very close to the
problem addressed in the present paper, the authors use thismethod to reconstitute the
geometry of a rectangular array of visual sensors that scansa fronto-parallel image.

Going further, Olsson et al. [21] use the information metricof [4] as a more ap-
propriate method to measure the distance between visual or other sensor elements.
They also show how visual sensors -the pixels of the camera ofa mobile robot- can be
mapped to a plane, either using the method of [23], or their own, that embeds sensor
elements specifically in a square grid.

The works of Olsson et al. and of Pierce and Kuipers are very interesting to com-
puter vision researchers, but they cannot calibrate an arbitrary discrete camera, since
the geometry of the embedding space is either abstract or fixed to a grid. In either case,
it lacks an explicit connection to the geometry of the sensor. Filling this gap is one of
the motivations for the present work.

Since the present work exploits statistical properties of the light-field of the world
surrounding a light sensor, this article is also related to research on the statistical prop-
erties of real-world images [13]. In this field a theoreticalframework which is gaining
more and more support considers the properties of the visualsystem to be reflections of
the statistical structure of natural images, because of evolutionary adaptation processes.
Our approach is similar in spirit, trying to replicate the plasticity of the visual system
of biological systems. That research has put in evidence fundamental properties, in
terms of local, global and spectral statistics, of real-world images, that has been also
exploited for computer vision tasks, such as classification[33], image restoration [7]
and 3D inference [24].

Although these results are of great interest, they are not directly applicable in our
case, mainly because we lack images.

Moreover, these statistics are about images formed on a planar image plane, which
is a hindrance in our case: first, we do not want to exclude the case of visual sensor
elements that are separated by more than 180 degrees, such asthe increasingly popular
omnidirectional cameras. Also, the local statistical properties of perspective images
depend of the orientation of the image plane with respect to the scene, except in special
constrained cases such as the fronto-parallel “leaf world”of Wu et al. [35]. Defining
images on the unit sphere thus appears as a natural way to render image statistics inde-
pendent of the sensor orientation, at least with proper assumptions on the surrounding
world and/or the motion of the sensor.
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Figure 2: The process of estimating the geometry of an unknown discrete camera.

Algorithm 1 Procedure for estimating the geometry of a discrete camera.
Input: Signals produced byN rigidly connected light sensors atT time instants:

x (i, t) , 1 ≤ i ≤ N , 1 ≤ t ≤ T . The light sensors are rigidly connected
and point towards unknown 3D directionsX1, . . . , XN , Xi ∈ R

3, X⊤X = 1.

Output: Estimates of the directionsX1, . . . , XN .

Algorithm:

1. Estimate the distancedij between the temporal signalsx (i, .) andx (j, .),
for each1 ≤ i, j ≤ N .

2. Estimate the angular separationsθij = cos
(

X⊤

i Xj

)

.
3. Embed the angular separation in the 3D sphere: findX1, . . . , XN s.t.

X⊤

i Xi = 1, X⊤

i Xj = cos (θij), 1 ≤ i, j ≤ N .

1.2. Proposed approach

In the present work, we assume that the statistical properties of the data streams
produced by pairs of sensor elements depends only on the angular separation between
the elements. This assumption, when one considers the images as observations of a
random field defined on the sphere, is equivalent [26] to assuming that the random
field is homogeneous3 - we could say “isotropic” to use the common image processing
vocabulary.

This assumption of homogeneity clearly does not hold in an anisotropic world,
unless the orientation of the sensor is uniformly distributed amongst all unitary trans-
formations of the sphere. We thus adopt this last assumption, in order to ensure the
homogeneity of the observations. In terms of computer vision and robotics, our as-
sumption amounts to saying that the sensor is randomly oriented, so that each photocell
is just as likely to sample the light-field in any direction.

The great practical utility of this assumption is that, as a consequence, the statisti-
cal properties of a pair of data streams generated by two photocells depend only on the
angle separating them. In this situation, one can envision estimating the angular separa-

3The definition of a homogeneous random field defined on the sphere is that the covariance between two
random variables sampled at two locations of the sphere depends only on the angular separation between the
two points and that the expectation does not depend on the sampling location
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Figure 3:Left: The camera used to sample omnidirectional images (image mirrored). Right: A calibrated
omnidirectional image mapped to a sphere.

tion from a measure of dissimilarity (e.g. correlation or information distance) between
the streams, and this is precisely what we do (Sec. 3). In order to estimate angles from
dissimilarity measures, we empirically observe the relation between these two quan-
tities. We may then (Sec. 4.1) embed these angular estimatesusing techniques from
distance geometry [5]. The whole process is outlined in Figure 2 and Algorithm 1. Fi-
nally Sec. 5 presents some conclusions and a list of questions to be addressed by future
research.

This work is the continuation of [11] and also includes some of the improvements
brought by our previous work [9]. In the latter, it is shown that a metric between
signals based on the correlation can just as well be used, instead of a metric based on
information distance. The embedding method used in [9] is described more thoroughly
in the present paper, allowing others to reproduce our results more easily.

2. Discrete camera model

Before entering into the details of our methodology for estimating the sensor ge-
ometry, we define the discrete camera and explain how to simulate it using an omnidi-
rectional image sensor.

We define adiscrete cameraas a set ofN photocells indexed byi ∈ {1, . . . , N},
pointing in directionsXi ∈ R

3. T, on the number of pixelsN , acquiring along timet,
brightness measurementsx (i, t) in the range{0, . . . , 255}. The directions of the light
rays, contrarily to conventional cameras, are not necessarily organized in a regular grid.
Many examples of cameras can be found under these definitions. One example is the
linear camera, where all theXi are co-planar. Another example is the conventional per-
spective camera which comprises a rectangular grid of photocells that are enumerated
in our model by a single indexi,

{

Xi | Xi ∼ K−1
[

i%W
⌊i/W⌋

1

]

, 0 ≤ i < HW
}

whereW , H are the image width and height,K is the intrinsic parameters matrix,%
represents the integer modulo operation and⌊.⌋ is the lower-rounding operation. Cam-
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eras equipped with fisheye lenses, or having log- polar sensors, can also be modeled
again by settingXi to represent the directions of the light-rays associated tothe image
pixels. In the same vein, omnidirectional cameras having a single projection center, as
the ones represented by the unified projection model [8], also fit in the proposed model.
In this paper we use a calibrated omnidirectional camera to simulate various discrete
cameras.

2.1. Simulated image sensor

We simulate a discrete camera with known Euclidean geometryby sampling a cal-
ibrated panoramic image with unique projection center at fixed locations. Since the
camera is calibrated, it is straightforward to locate the position (u, v) in the panoramic
image corresponding to the 3D directionXi of a photocell that is part of the simu-
lated discrete camera. In the present work, we use bilinear interpolation to measure the
graylevel value at non-integer coordinates(u, v).

Images are acquired by a VStone catadiopric camera consisting of a perspective
camera fitted to a hyperbolic mirror, shown in Figure 3, left.This system is modeled as
single projection center camera [8] with a360◦× 210◦ field of view and a∼ 45◦ blind
spot at the south pole (Fig. 3, right). The mirror occupies a453 × 453 pixel region of
the image. The angular separation between neighboring pixels in the panoramic image
is usually slightly smaller than 0.5◦. Also, some mild vignetting occurs, that could be
corrected. Apart for these minor inconveniences, simulating a discrete camera by an
omnidirectional camera presents many advantages: no otherspecialized hardware is
needed and each omnidirectional image can be used to simulate many discrete camera
“images”, as in Fig. 4 (a). With respect to perspective cameras, the available field of
view allows to study very-wide-angle discrete cameras.

2.2. Data acquisition

For the purpose of studying the effect of angular separationon joint photocell signal
statistics, we use the 31-pixel planar camera (or “probe”) shown in Fig. 4 (b). This
probe design allows to study the effect of angular separations ranging from 0.5 to 180
degrees and each sample provides 465=31(31-1)/2 pixel pairs. In the “tighter” part of
the discrete camera layout, there exists a slight linear dependence between the values
of consecutive pixels due to aliasing.

The camera is hand-held and undergoes “random” general rotation and translation,
according to the author´s whim, while remaining near the middle of the room, at 1.0
to 1.8 meters from the ground. We acquired three sequences consecutively, in very
similar conditions and joined them in a single sequence totaling 1359 images, i.e. ap-
proximately 5 minutes of video at 4.5 frames per second.

To simulate the discrete camera, we randomly choose an orientation (i.e. half a
great circle) such that all pixels of the discrete camera fall in the field of view of the
panoramic camera. Figure 4 (b) shows two such choices of orientations. For each
choice of orientation, we produce a sequence of31 samplesx (i, t), 1 ≤ i ≤ 31, 1 ≤
t ≤ 1359, where eachx (i, t) ∈ {0, . . . , 255}. Choosing 100 different orientations, we
obtain 100 discrete sensors and 100 arrays of data. Appending these arrays we obtain
31 signalsx (i, t) of length to 135900.
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Figure 4:(a)Two instances of the linear discrete camera, inserted in an omnidirectional image. Pixels loca-
tions are indicated by small crosses connected by white lines. (b) Geometry of a discrete camera consisting
of a planar array of thirty one (31) pixels, spanning 180◦ in the plane. The first two pixels are separated by
0.5◦, the separation between consecutive photocells increasesgeometrically (ratio≃ 1.14), so that the 31st

photocell is antipodal with respect to the first.(c) Four images of a set to be used for calibration learning.

Considering any pair of pixel (indices)1 ≤ i, j ≤ 31, the angular separationθij is
the main object to estimate by our method, and it is known in our test setup. We define
in the next section two possible metricsd(i, j) between signalsx(i, t) andx(j, t), 1 ≤
t ≤ 135900 and, as a result, get a dataset,D of angle-distance pairs:

D = {(θij , d (i, j)) | 1 ≤ i, j ≤ 31} . (1)

We will then use this dataset to build a functional relation that allows to estimate the
angular separationθij from the information distanced (i, j).

3. Distances between pairs of signals vs angular separations

In this section, we define the measures of distance between signals, namely corre-
lation and information distance, and use them to build a functional relation between the
angle separations of photocells and the distances of pixel streams they acquire.

3.1. Correlation distance

We call correlation distance between signalsx (t) andy (t), 1 ≤ t ≤ T , the quantity

dc (x, y) =
1

2
(1 − C (x, y)) ,
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whereC (x, y) is the correlation between the signals. It is easy to verify thatdc (., .) is
a distance.

For the task considered in this paper, it is natural to preferthe correlation distance
over the covariance or the Euclidean distance‖x − y‖, because both vary with signal
amplitude (and offset, for the latter), whereasdc (., .) is offset- and scale-invariant.

3.2. Information distance

Given two random variablesx andy (in our case, the values produced by individual
pixels of a discrete camera) taking values in a discrete set{1, . . . , Q}, theinformation
distancebetweenx andy is [4]:

d (x, y) = H (x|y) + H (y|x) = 2H (x, y) − H (y) − H (x) , (2)

whereH (x, y) is the Shannon entropy of the paired random variable(x, y), andH (x)
andH (y) are the entropies ofx andy, respectively. It is easy to show that Eq. (2)
defines a distance over random variables. This distance is bounded byH (x, y) ≤
log2 Q, and can be conveniently replaced by thenormalized information distance:

d̄ (x, y) = d (x, y) /H (x, y) . (3)

The advantage of (3) over (2) is that its properties are more invariant toQ: Eq. (2) is
bounded bylog2 Q and is not necessarily equal to its upper bound whenx andy are
independent. In contrast, Eq. (3) is bounded by1 independently ofQ and is exactly1
if and only if x andy are independent [4].

3.3. Estimating the information distance

Caution should be taken when estimating the information distance (3) from finite
samplesx (t), y (t), 1 ≤ t ≤ T : it is relatively common knowledge that replacing
unknown probabilitiespx (q) by sample frequencieŝpx (q) = |{t|x (t) = q}| /T 4 in
the expressions of the entropy results in the biasedplug-in estimatorĤ (x), with ex-
pectancy

E
{

Ĥ
}

= H −
Q − 1

2T
+

1 −
∑

q
1

px(q)

12T 2
+ O

(

1

T 3

)

. (4)

This bias in turn causes a bias in the information distance estimates in Eq. (3). While
correcting for the first bias term(Q − 1) /2T , is easy and results in the Miller-Madow
estimator, correcting for the other terms is more delicate [30]. In addition to the plug-in
and Miller-Madow estimators, we also consider here the estimator of Paninski [22].

A first consideration in the choice of estimators is the number of binsQ. Since the
bias decreases slowly and is to a large extent proportional to Q, it is advantageous to
re-quantize the signals from 256 graylevels to a more parsimonious representation with
Q < 256 bins. When re-quantizing signals for estimating their information distance,
we found a slight advantage in choosing bins that maximize the entropy, i.e. bins that
contain equal numbers of values. All signal re-quantization in this paper is done using
this scheme, also used in [21].

4|.| denotes the set cardinal.
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Figure 5: Each of these plots shows how bias of various estimators is affected by signal length. Each curve is
the average of 150 information distance estimates, taken between signals generated by photocells separated
by approximately 5 degrees. The signal length is varied from1359 to 43488. A good estimator is one
for which the mean value changes little with the signal length. The three considered information distance
estimators are: the plug-in estimator, the Miller-Madow corrected estimator and Paninski´s estimator.

In order to choose a suitable estimator of the information distance, we first consider
the stability of each estimator with respect to signal length. In Fig. 5, each curve is the
average of 150 information distance estimates, taken between signals generated by two
photocells separated by approximately 5 degrees, when the signal length varies approx-
imately from1350 to 435005. The leftmost curve shows that, forQ = 4, all estimators
behave pretty well, although the asymptotic value appears smaller than withQ > 4
(two plots at right). This last effect results from the information lost in quantization.
ForQ = 16, the middle curve shows that Paninski´s estimator is stablest, but not much
more than the Miller-Madow estimator, while the plug-in estimator is clearly far from
its asymptotic value when the signals length is 1350. Finally, for Q = 64, the right-
most curve shows the trend of the previous curve greatly increased: asQ increases,
the termQ2 in the bias expression forH (X, Y ) or H (X |Y ) in Eq. (2) becomes more
important and more samples are needed to reduce it. Not shownin these curves, the
standard deviations of all three estimators are comparable.

From the previous result, the Miller-Madow estimator appears like a good choice,
due to its relatively good performance, and to the fact that it is is very easy to compute.
In contrast, the Paninski estimator requires the computation of a table of same length
as the signal, which renders it impractical with signals of variable length.

In order to further assess the advantage of the Miller-Madowestimator over the
plug-in estimator, we show the results of other experimentsperformed by varyingQ
and the angular separation between the photocells.

Figure 6 shows the average information distance Eq. (3) between the outputs of
sensors with known angular separation. Each plot holds fourcurves, corresponding to
Q = 2, 4, 16 and 64. The left plot uses bias correction, whereas the right plot does
not. The curves in the left plot are better grouped, showing that, when bias reduction is
applied, the information distance estimates depend less onQ. This is important if one
is interested in estimating properties of the information distance that depend on angular
separation and on the ambient light field, rather than onQ andT .

5In order to obtain signals of length greater than1359, the original length of our signal, we concatenate
many signals corresponding to different sensor orientations.
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Figure 6: Dependency of the information distanced (i, j) on the angular separationθij . The height of each
plotted point is the average of 100 estimates of the information distance between signalsx (i, 1 ≤ t ≤ 1359)
andx (j, 1 ≤ t ≤ 1359). The abscissa is the angular separations between pixelsi and j of the discrete
camera. Each curve corresponds to a different numberQ of quantization bins. The quantization bins are all
taken to have weight1/Q. Right: Information distances computed with the first-order bias correction term
of Eq. (4) removed.Left: Distances computed without correction.

The conclusion of these experiments is that adding the first correction term in
Eq. (4) to entropy estimates in Eq. (3) is justified and beneficial, especially when only
short sequences are available. For the above reasons, we will use the Miller-Madow
estimator in the sequel, and useQ = 4 bins, which is appropriate for short sequences.

One should note that correcting for bias in the entropy estimates is less important
in the situation of Olsson et al. [21], where the distance measurements are embedded
directly in an abstract space. Obtaining accurate information distance estimates is im-
portant in our approach because our goal is to accurately mapinformation distance to
angles.

3.4. Estimating angular separations from inter-signal distances

As explained earlier, our a-priori knowledge of the world will be encoded in a func-
tional relation mapping a measure of discrepancy between two signals, to the angular
separation between the photocells that generated the signals. We now build this func-
tional relation and assess its effectiveness at estimatingangles.

In the previous section we detailed the computation of the distances between pixel
streams, and therefore completed the construction of the angles and distances dataset
D (Eq. 1). From this dataset, we can finally build a constant by parts model of the
expectancy of the distance knowing the angle. After verifying and, if needed enforcing,
the monotonicity of this model, we invert it, obtaining a graph of angles,θ as a function
of (correlation or information) distances,d:

θ = F(d) (5)

Strict monotonicity has to be enforced for the correlation-based data, owing to the
relatively small number of data points used for each quantized angle.

Figure 7 shows the resulting graphs. This figure shows one of the major issues
that appear when estimating the angular separation betweenpixels from the correlation
or information distance: the graphs become very steep for large values of the distance,
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Figure 7: Models relating correlation (left) or information distance (right) to angular separation between
photocells. These models were build from simulated signalsproduced by the linear probe of Fig. 4(a).
Signals of lengthT = 135900, acquired indoors were used.

indicating that small changes of the distance result in large changes in the estimated an-
gle. Hence, a small uncertainty in the estimated distance implies a large uncertainty in
the estimated angle. This problem is somewhat mitigated, inthe case of the correlation
distance, by limiting the abscissa to values[0, 1/2]. For small distance values, on the
other hand, the curves are much flatter, suggesting that small angles can be determined
with greater accuracy. Both trends are particularly true for the information distance.

3.5. Experimental validation

We now assess how well angles can be estimated from the graphsobtained in the
previous section. As described in Sec. 2.2, we collect in each omnidirectional im-
age the samples necessary to simulate 100 discrete linear sensors, each one having 31
photocells (100 times 31-tuples per image). For each 31-tuple of signals, we estimate
the31 · 30/2 correlation and information distances between pairs of signals and map
these distance to angles using the models of Fig. 7. We assessthe quality of the angle
estimators by comparing these estimated angles with the known true angles.

Figure 8 (a) and (b) show the boxplots the 100 estimated angles versus the true
angles for the correlation- and information-based estimators, respectively. These plots
show that the true angles are well estimated for small angles, while the spread and
apparent bias of the estimators increases sharply for angles greater than five or ten
degrees.

Figure 8 (c) and (d) better illustrate this trend: Figure 8 (c) plots the mean esti-
mated angle versus the true angle. This figure shows that the estimators are essentially
unbiased until five degrees and that they underestimate angles after that. Figure 8 (d)
plots the mean absolute error in the estimated angles.

Figure 8 shows how the proposed angle estimators perform on signals produced
in the same conditions of environment and motion as the signals used to build the
correlation and information distance-to-angle models. Since we will want to use these
estimators in other situations, we must also evaluate theirperformance in more general
conditions.
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Figure 8: Validation of the distance-to-angle models of Figure 7. Boxplots (a) and (b) show the 5th percentile,
first quartile, median, third quartile and 95th percentile of 100 angles estimated from signals of lengthT =
1359 simulated using the indoor sequence of Fig. 4 (c). The anglesare estimated from information distance
in (a) and correlation in (b). The curves in (c) show the mean estimated angle v.s. the true angle, and (d)
shows the mean absolute error in the estimated angles.

Figure 9 shows how the proposed angle estimators perform on signals captured
outdoors and indoors by the same camera setup as above. This time, the camera is
held mostly horizontally, but the virtual discrete camerasstill have pretty random ori-
entations, owing to the very wide field of view. Four of the 2349 images are shown in
Fig. 9 (a). Again, we sampled 100 time 31-tuples of pixel-values per image and com-
pared the true angles with the angles estimated using the correlation and information
distance based estimators.

Figure 9 (b) shows the mean of the 100 estimated angles, whileFig. 9 (c) shows the
mean absolute error. This figure shows that, globally, the estimators actually perform
better on this dataset than on the dataset acquired in the same conditions used to build
the estimators.

Using the same outdoors and indoors sequence, but sampling horizontal virtual
cameras allows to evaluate the performance of the angle estimators when the assump-
tion of uniform sensor orientation is violated. Since the camera was mostly horizontal
during the capture of the outdoors and indoors sequence of Fig. 9, and the virtual sen-
sors sampled in the present experiment remained horizontal, these virtual sensors in
effect have a very restricted set of orientations.

12



(a) Four images of a sequence for testing the calibration methodology.
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Figure 9: (a) Four out of 2349 images of an outdoors and indoors sequence used to validate the angle
estimators. (b) Mean of 100 sets of angles estimated from this sequence, plotted versus the true angle. (c)
Mean absolute error in the estimated angles.

Nevertheless, Fig. 10 shows that the signals captured in these conditions allow to
estimate angles with an accuracy that is less good than that of Fig. 9, but not much less
good. One should note that the mean estimated angle is alwayssmaller than the true
angle. This seems to indicate that the correlation is greater between signals obtained
by sampling along the horizon.

Finally we go a step further in testing the generalization ability of the proposed
angle estimators. We now use different sensor, point-and-shoot Olympus Stylus 300
camera that can acquire160 × 120 videos at∼ 15 frames per second. Multiple se-
quences of typically 1050 images (70 seconds) were taken indoors and outdoors, while
the camera was moving, predominantly horizontally and forward, but also with differ-
ent orientations. The horizontal and vertical fields of viewcover 50 and 35 degrees,
respectively. These sequences were concatenated, forminga single sequence of 22822
images. Figure 11 (a) show four of the images in the sequence.Obviously, this se-
quence does not allow to simulate a sensor with 180 degrees offield of view. In this
experiment, we use a linear sensor consisting of 31 photocells spanning 35 degrees.
The first two pixels are separated by 0.5◦, the separation between consecutive photo-
cells increases geometrically, so that the 31st photocell is 35 degrees away from the
first.

Figure 11 (b) and (c) show the precision and accuracy of the estimated angles. This
figure shows that both estimators slightly overestimate angles, possibly due to the high
texture contents that is often present in the images. The estimator based on information

13



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  20  40  60  80  100  120  140  160  180

E
st

im
at

ed
 A

ng
le

True Angle

Mean Angle Estimate from Signal Distance

Mean Est. from Info. Distance
Mean Est. from Correlation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100  120  140  160  180

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (

de
g)

True Angle (deg)

Abs. Error in Estimated Angles

Info. Distance
Correlation

(a) Mean estimated angle v.s. true angle (b) Mean absolute error in estimated angles

Figure 10: Results of the angle estimators estimated from the sequence of Fig. 9, but with the virtual linear
sensor kept mostly horizontal. (a) Mean of 100 sets of angles, plotted versus the true angle. (b) Mean
absolute error in the estimated angles.

distance performs somewhat better than that based on correlation.

4. Calibrating a discrete camera

Having seen how to estimate the angle between two pixels fromthe correlation or
the information distance between their respective data streams, we now estimate the
whole sensor geometry from angle estimates. In this section, we produce sequences
of pixel signals in the same conditions as in Sec. 2.2, exceptthat the sensor shape is
different. The distance between all pairs of signals are then estimated, and the angu-
lar separation between the pixels are estimated using Sec. 3.4. Finally, these angle
estimates are embedded in the sphere using the algorithms defined in this section.

4.1. Embedding points in the sphere

The last step in order to solve the discrete camera calibration problem will be taken
by solving the problem:

Problem 1) Spherical embedding problem: Given angle estimatesθij , 1 ≤ i, j ≤
N , find pointsXi on the unit sphere, separated by angles approximately equalto
θij , i.e. X⊤

i Xj ≃ cos θij , for all i, j.

This problem can be reduced to the classical problem of distance geometry [5]:

Problem 2) Euclidean embedding problem: Given distance estimatesDij , 1 ≤ i, j ≤
N , find pointsYi in a metric vector space, such that, for alli, j, ‖Yi − Yj‖ ≃ Dij

Indeed, by defining an extra pointY0 = (0, 0, 0), and distancesDij =
√

2 − 2 cos θij ,
the mapping of the first problem to the second is immediate.
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(a) Four images from a sequence of 22822 for testing the calibration methodology.
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Figure 11: (a) Images 300, 8400, 11300 and 13100, in a set of 22822 images acquired with an off-the-shelf
digital camera. (b) Mean of 100 sets of angles, plotted versus the true angle. (c) Mean absolute error in the
estimated angles.

4.2. Factorization method

Solutions to both problems (with exact equality, rather than approximate) were
published by 1935 [29]6. Schoenberg´s Theorem 2 [29] states that if the matrixC with
termsCij = cos θij is positive semidefinite with rankr ≥ 1, then there exist points on
the unit(r − 1)−dimensional sphere that verifyX⊤

i Xj = Cij for all i, j. This result
directly suggests the following method for embedding points in the 2-sphere:

1. Build the matrixC with termsCij = cos θij , 1 ≤ i, j ≤ N .

2. Compute, using the SVD decomposition, the rank-3 approximationC̃ = UU⊤

of C, whereU is N ×3. In essence, this involves square-rooting the three largest
singular values ofC and using them to scale the first three components of the
left singular values7.

3. DefineXi = (Ui1, Ui2, Ui3) / ‖(Ui1, Ui2, Ui3)‖.

In the absence of noise, this very simple algorithm gives theexact solution, up to a uni-
tary transformation. When there is noise, however, it is notoptimal in many ways. In
particular, it does not take into account the structure of the approximately multiplicative
noise in the anglesθij .

6Schoenberg cites [15] and [19] as, respectively, previous solutions to Problems 1 and 2. These are the
earliest references we are aware of.

7Using Matlab/Octave notation: [u,s,v]=svd(C); U=u(:,1:3)*sqrt(s(1:3,1:3))
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Sensor diameter= 5
◦ Sensor diameter= 10

◦ Sensor diameter= 20
◦

Figure 12: True and estimated pixel layouts of a discrete camera consisting of photocells lying on a triangular
grid. To estimate the layout, each pixel was sampled 1359 times. The information distance between pairs of
pixels was estimated from these values, and converted to angular estimates using our non-parametric model.
The angular distances were then embedded in the sphere. For visualization, they are aligned by the usual
procrustes method, mapped to the plane by projective mapping with unit focal length, and line segments
indicate the original pixel neighborhood relations.

In practice, this algorithm is very sensitive to noise: Fig.12 shows the results of
the reconstruction, when the pixels lie on a triangular gridof the image plane, scaled
so that the angular diameter of the whole discrete camera is5◦ (left), 10◦ (middle) or
20◦ (right). Please note that the lines connecting the photocell positions serve only to
better illustrate the correspondence.

The reconstructed grids shown here are typical of what researchers reproducing
our method may encounter. It is easy to see that for small-diameter discrete cameras,
the estimated shape is pretty well determined by the information distance between the
pixel streams, whereas, when the angular diameter increases, the noise in the estimated
angles gradually overwhelms the embedding algorithm. It iscommon for the factoriza-
tion method to break down with sensors of20◦ diameter or less [11].

A different method is thus needed if we wish to obtain better calibration results. It is
easy to verify that this situation is not directly tractableby variable-error factorization
methods used in computer vision, such as [14]. In the next section, we will define and
validate a more performant algorithm.

4.3. Robust nonlinear embedding method

Noting that the error in the estimated angles is approximately proportional to the
actual angle suggests that the embedding method should weigh less heavily large an-
gular estimates.

One such method is Sammon´s algorithm [27], which we adapt tospherical -rather
than Euclidean- embedding. In this paper, we minimize the weighted sum of the dif-
ferences of the angle estimates with the internal products of directions:

X̂ = arg min
X

∑

i,j

wi,j

(

X⊤

i Xj − Cij

)2
, (6)
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Algorithm 2 Spherical embedding

Input: Distance matrixΘ with termsθij , 1 ≤ i, j ≤ N, θij ∈ [0, π]

Output: Embedded pointsXi, 1 ≤ i ≤ N on the unit sphere.

1. Compute the minimum spanning treeT of Θ.
2. Select the triplet(i, j, k) of points such that(i, j) ∈ T , (i, k) ∈ T and the

spherical angleˆjik is maximized.
3. ChooseXi, Xj andXk s.t. X⊤

i Xj = cos (θij), X⊤

i Xk = cos (θik) and
X⊤

j Xk = cos (θjk).
4. Define the set of already embedded pointsB = {i, j, k}.
5. Define the setN of neighbors of B that are not inB: N =

{i | ∃j ∈ B, (i, j) ∈ T } .

6. For each elementi in N , taken from the closest toB to the furthest:
7. Findj ∈ B s.t. (i, j) ∈ T andk ∈ B that maximizes the spherical

angle ˆjik.
8. TriangulateXi from θij andθik (disambiguate using other points of

B).
9. UpdateN := N\ {i}, B := B ∪ {i}.

10. End while
11. If B 6= {1 . . .N}, then goto 5.

whereX = {X1, X2, · · · , XN} and

wij =

{

max
{

0, 1
1−Cij

− 1
1−Co

}

if Cij 6= 1
1
η

otherwise.

To reflect the fact that big angles are less well estimated, wesetC0 = 0.9, so that
estimates greater than acos(0.9) ≃ 25◦ be ignored. The other parameter,η is set
to 1, allowing the pointsXi to stray a little bit away from the unit sphere. Our im-
plementation is inspired by the second-order iterative method of Cawley and Talbot
(http://theoval.sys.uea.ac.uk/~gcc/matlab/default.html). For initial-
ization, we modify the algorithm by Lee, Slagle and Blum [18], which operates on the
plane, so that it operates on the sphere.

Combining Sammon´s algorithm to that of Lee, Slagle and Blumis not an unusual
practice for embedding in Euclidean space, e.g. [2].

The algorithm by Lee, Slagle and Blum works by steps, adding one point to a
set of already embedded points at each step, starting from a triangle. The embedded
points verify2N − 3 of the original distancesθij exactly, i.e. the minimum number
of distances that uniquely define the positions of allN points up to an isometry. The
algorithm has quadratic complexity inN .

In our case, the algorithm is adapted to embed in the unit sphere anN ×N distance
matrix with termsθij , 1 ≤ i, j ≤ N , θi,j ∈ [0, π]. The algorithm is detailed in Algo-
rithm 4.3. It is easy to see that this algorithm favors using small angle estimates and
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Figure 13: Calibrations of two different sensors covering more than one hemisphere. On the left, a band-like
sensor consisting of 85 photocells, calibrated from correlations (estimated: smaller, true: bigger). On the
right, a discrete camera covering more than 180×360◦, of 168 photocells, calibrated from the information
distance (estimated: smaller, true: bigger). Each ball represents a photocell except the big black balls,
representing the optical center.

ignoring larger ones: first, in step 1, the edges that are partof the minimum spanning
tree are by nature short (for example, the nearest-neighborgraph is a subgraph of the
minimum spanning tree). Then, when adding a point to the setB of already embedded
points (step 7), this is done by triangulating with two points ofB that are necessarily
close to the added point. Also note that the angleˆjik in step 7 cannot be greater than
π/3, by definition of the minimum spanning tree, and the triangleused to localize the
newly added point is far from a degenerate configuration. In addition to the useful
properties just mentioned, this algorithm is simple to implement.

4.4. Testing the generality of the method

We now evaluate the results of the complete calibration methodology, and in partic-
ular the robust embedding algorithm on data produced by the angle-estimating method
of Sec. 3.4. In this section we test two main cases: (i) calibrating non planar discrete
cameras having enlarged fields-of-view, using the same image acquisition device de-
scribed in Sec. 2.1, and (ii) calibrating a rectangular discrete camera, but based on a
different image acquisition device, namely a (consumer) digital camera.

Calibration from an indoors-and-outdoors sequence.The main objective here is test-
ing the calibration of large fields-of-view while using calibration images that have com-
pletely different illuminations and textures (as comparedto indoors image datasets).
For this purpose, we produce sequences of pixel signals in the same conditions as pre-
viously, using the outdoors and indoors sequence shown in Fig. 9(a), except that the
discrete-sensor shape is different. The information and correlation distances between
pixels is then estimated from these signals, the angular separation between the pixels
is estimated using Sec. 3.4, and the embedding method of Sec.4.1 is applied to these
angle estimates.

Figure 13 shows the results of our calibration method on sensors covering more
than a hemisphere, which thus cannot be embedded in a plane without significant dis-
tortion. It should be noted that, although the true sensor iseach time more than hemi-
spheric, the estimated calibration is in both cases smaller. This shrinkage is a known
effect of some embedding algorithms, which we could attemptto correct.
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(a) Correlation-Based (b) Information Distance-Based

Figure 14: Reconstructed and true pixel layouts of a discrete camera consisting of photocells lying on a
rectangular grid (a,b). The sensor used differs from that with which the models of Fig 6 were built. The
reconstructions are obtained by first estimating the pairwise angular distances, then embedding the angles
in the sphere (see text). For visualization, the reconstructions are aligned by the usual procrustes method,
mapped to the plane by projective mapping with unit focal length. Added line segments show the true pixel
neighborhood relations. Plot (a) is obtained from the correlation distance, and plot (b) from the information
distance.

Calibration using a different image sensor.Figure 14 shows how our method applies
to signals produced by a different sensor from the one used tobuild the distance-to-
angle models, namely an Olympus Stylus 300 camera. An 8-by-8square grid pixels
spanning 34 degrees was sampled along a 22822 image sequencetaken indoors and
outdoors. From this sequence, the estimated angles were generally greater than the
true angles, which explains the absence of shrinkage. The higher angle estimates were
possibly due to higher texture contents of the sequence. Theestimated angles were also
fairly noisy, possibly due to the sequence length, and we surmise that longer sequences
would yield better results.

These results represent typical results that researchers reproducing our method may
encounter.

5. Discussion

This paper addressed the problem of determining the geometry of a set of photocells
in a very general setting. We have shown that a discrete camera can be calibrated to
a large extent, using just two pieces of data: a table relating information distances
to angles; and a long enough signal produced by the camera. The main assumptions
are that the camera motion directs each pixel uniformly in all directions, and that the
environments in which the table is built and the one in which the calibrated sensor
evolves are statistically similar.

Our algorithm proceeds in three main computational steps. We first estimate the in-
formation distance between each pair of signals. Then, using a pre-built table relating
distances to angles, we transform the information distances into estimated angles. In
the final step we embed the angles in a sphere, with a method that takes into account the
noise introduced by the estimation process. It should be noted that the first and third
steps are in themselves open problems that are the object of much research [1, 3, 5].
In particular we adapted two embedding methods [18, 27] and obtained an algorithm
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adapted for the approximately multiplicative noise in the estimated angles. Experi-
ments on simulated sensors assess the validity of the proposed approach.

As said above, we assumed an isotropic light field, which can be easily produced
manually moving the camera in any environment with enough visual stimuli. Drop-
ping this assumption might allow to calibrate, for example,a sensor that is moving
mostly in one direction e.g. the eyes of a fly that mostly flies forward. It could also be
interesting to generalize the proposed method to calibratea discrete camera with a non-
central calibration model, e.g. an earthworm with eyes all over the body. This poses
an immediate challenge, because describing the geometric relation between two non-
intersecting rays requires four parameters, while a singleangle describes the relation
between two intersecting rays. Future work will address this open problems.

References

[1] J. Beirlant, E. Dudewicz, L. Gyorfi, and E. van der Meulen.Nonparametric entropy esti-
mation: An overview.International J. of Mathematical and Statistical Sciences, 6:17–39,
1997.

[2] G. Biswas, A.K. Jain, and R.C. Dubes. Evaluation of projection algorithms.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 3(6):701–708, 1981.

[3] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite programming ap-
proaches for sensor network localization with noisy distance measurements.IEEE Trans-
actions on Automation Science and Engineering, 3(4):360–371, 2006.

[4] J. P. Crutchfield. Information and its metric. In L. Lam and H. C. Morris, editors,Nonlin-
ear Structures in Physical Systems–Pattern Formation, Chaos and Waves, pages 119–130.
Springer-Verlag, 1990.

[5] Jon Dattorro.Convex Optimization & Euclidean Distance Geometry. Meboo Publishing,
2005.

[6] R. Fergus, A. Torralba, and W. T. Freeman. Random lens imaging. Technical Report MIT
CSAIL TR 2006-058, Massachusetts Institute of Technology,2006.

[7] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. Interna-
tional Journal of Computer Vision, 40(1):25–47, 2000.

[8] C. Geyer and K. Daniilidis. A unifying theory for centralpanoramic systems and practical
applications. Inproc. ECCV, volume II, pages 445–461. Springer-Verlag, 2000.

[9] E. Grossmann, J. A. Gaspar, and F. Orabona. Calibration from statistical properties of the
visual world. InEuropean Conf. on Computer Vision, 2008, 2008.

[10] E. Grossmann, E-J Lee, P. Hislop, D. Nistér, and H. Stewénius. Are two rotational flows
sufficient to calibrate a smooth non-parametric sensor? Inproc. IEEE CVPR, 2006.

[11] E. Grossmann, F. Orabona, and J. A. Gaspar. Discrete camera calibration from the in-
formation distance between pixel streams. InProc. Workshop on Omnidirectional Vision,
Camera Networks and Non-classical Cameras, OMNIVIS, 2007.

20



[12] R. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[13] A. Hyv arinen, J. Hurri, and P. O. Hoyer.Natural Image Statistics — A probabilistic ap-
proach to early computational vision. to be published by Springer-Verlag, 2008. Preprint
available at http://www.naturalimagestatistics.net/.

[14] M. Irani and P. Anandan. Factorization with uncertainty. In European Conf. on Computer
Vision, 2000.

[15] L. Klanfer. Metrische charakterisierung der kugel. InErgebnisse eines mathematischen
kolloquiums, volume 4, pages 43–45, 1933.

[16] I. Kohler. Experiments with goggles.Scientific American, 206:62–72, 1962.

[17] W. J. Krzanowski.Principles of Multivariate Analysis: A User’s Perspective. Clarendon
Press, Statistical Science Series, 1988.

[18] R. C. T. Lee, J. R. Slagle, and H. Blum. A triangulation method for the sequential mapping
of points from n-space to two-space.IEEE Trans. Computers, 26(3):288–292, 1977.

[19] K. Menger. New foundations of euclidean geometry.American Journal of Mathematics,
53:721–745, 1931.

[20] D. Nistér, H. Stewenius, and E. Grossmann. Non-parametric self-calibration. Inproc.
ICCV, 2005.

[21] L. Olsson, C. L. Nehaniv, and D. Polani. Sensory channelgrouping and structure from
uninterpreted sensor data. InNASA/NoD Conference on Evolvable Hardware, 2004.

[22] L. Paninski. Estimation of entropy and mutual information. Neural Computation, 15:1191–
1254, 2003.

[23] D. Pierce and B. Kuipers. Map learning with uninterpreted sensors and effectors.Artificial
Intelligence Journal, 92(169–229), 1997.

[24] B. Potetz and T. S. Lee. Scaling laws in natural scenes and the inference of 3d shape. In
NIPS – Advances in Neural Information Processing Systems, pages 1089–1096. MIT Press,
2006.

[25] S. Ramalingam, P. Sturm, and S. Lodha. Towards completegeneric camera calibration. In
Proc. CVPR, volume 1, pages 1093–1098, 2005.

[26] R. Roy. Spectral analysis for a random process on the sphere. Annals of the institute of
statistical mathematics, 28(1), 1976.

[27] J. W. Jr. Sammon. A nonlinear mapping for data structureanalysis.IEEE Transactions on
Computers, C-18:401–409, 1969.

[28] G. Schmidt and D. T. Moore. Tapered gradient index microlenses for compound lens arrays.
In Proc. SPIE Vol. 6342, International Optical Design Conference, 2006.

[29] I. J. Schoenberg. Remarks to Maurice Fréchet’s article“Sur la définition axiomatique d’une
classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert”.Annals of
Mathematics, 36(3):724–732, 1935.

21



[30] T. Schuermann. Bias analysis in entropy estimation.J. Phys. A: Math. Gen, 37:L295–L301,
2004. arXiv:cond-mat/0403192v3.

[31] F. W. Snyder and N. H. Pronko.Vision with spatial inversion. University of Wichita Press,
1952.

[32] G. M. Stratton. Some preliminary experiments on visionwithout inversion of the retinal
image.Psychological Review, 3(6):611–617, Nov 1896.

[33] A. Torralba and A. Oliva. Statistics of natural image categories.Network: Computation in
Neural Systems, 14:391–412, 2003.

[34] R. Tsai. An efficient and accurate camera calibration technique for 3D machine vision. In
IEEE Conf. on Computer Vision and Pattern Recognition, 1986.

[35] Y. N. Wu, S.-C. Zhu, and C.-E. Guo. From information scaling of natural images to
regimes of statistical models. Technical Report 2004010111, Department of Statistics,
UCLA, 2004.

22


