Are two rotational flows sufficient to calibrate a smooth nonparametric sensor?
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Abstract where K is an upper triangular matrix and denotes

collinearity. Hartley p] shows that such a projective camera
We present an attempt to determine whether the shapecan be calibrated from two finite rotations.

of a generic central-projection camera, such as the eye of  The model in Eq. 1) can be improved to deal with ra-
an insect or a log-polar camera, can be determined from dial distortion, by considering that pixel and Euclidear co
two motion flows resulting from purely rotational motions ordinates are related by a polynomial or rational fraction
with non-collinear axes. Our first contribution is to write. mapping p, 7]. The calibration of other sensors, such as
the smooth non-parametric calibration problem as a differ- catadioptric cameras’] 3] has also been considered. All

ential equation. It is unclear at present whether this prob— these approaches consider parametric mappings from pixe|
lem has unigue solution, up to an orthogonal transforma- tg Euclidean coordinates.

tion. Our second contribution is a discretized version @ th
smooth problem, for which we give a calibration algorithm
- a third contribution. Using this algorithm, we explore
numerically the properties of the discrete self-caliboati
problem, giving some insight on the nature of the problem.
We show examples of successful self-calibration, but danno
give a definite affirmative answer to the question in the.title

Our work differs from these approaches by considering
sensors where the map from pixel coordinates to Euclidean
coordinates may be any diffeomorphisih rather than a
mapping from a more restricted class. The only constraint
are thus smoothness of the mapping, and the existence of a
central projection point.

The increased availability of such generic sensors has
motivated research on their self-calibration. Like the
present work, recent resultsd, 16, 11, 14, 12] concern
known types of motion: pure translations or rotations, init
or infinitesimal.

Knowing the geometry of an imaging sensor is a critical  |n this paper, we focus on the case of two motion flows
component of many computer vision tasks. Accordingly, (infinitesimal motions)§], corresponding to pure rotational
a large body of research has been devoted to this subjectmotions of the camera around two non-collinear axes pass-
Most research deals with the common case of a projectiveing through the center of projection. Given two flows like
camera, in which pixel coordinates and Euclidean coordi- that in Fig.1 right, we try to determine a mapping from the
nates in the image plane are related by a homography [ image plane into itself (for example the one at the left of
A sensor is then characterized by a mappingrom sen-  the figure) such that the flow, transformed into the coordi-

sor pixel coordinates (e.g. in-1,1]%) to optic rays, i.e.  nate system defined by the mapping (middle of the figure),
elements of the unit sphe®?. Most work on calibration s compatible with a pure rotational motion.

assumes a model in whidh is of the form

1. Introduction

Our main contribution is the novel formulation of the
F(z)~ K x @ problem of calibrating a generic central projection sensor
1] from two flows, together with an algorithm to solve it. With

*The authors are thankful for the detailed reviews and forstigport rgspect to 17 we get a Euclidean (vs. projective) Cal!bra'
of NSF grant DMS-050378. tion from two (vs. three) dense (vs. sparse) flows. With re-




spect to [4], we our algorithm uses information from two DxF(X) V1 (X) = wixF(X), and (4)

(vs. three) motions only. DxF(X) - Vo(X) = wyx F(X). (5)
2. Notation and smooth problem formulation The answer to this question is given in’]: the set con-
sist only in

We choose to represent a sensor, i.e. a mapping from
the oriented projective plane 5] to itself, by a diffeo- S = {(Rwi‘,Rw;,Ro F) |Ris3 x 3 and RTR = ]3},

morphismF : R? — R? s.t. forallA > 0, and for all (6)
point X represented by its homogeneous coordinates, onewhere I is the identity matrix. That is, the solution
has ' (A\X) = AF (X) and||F'(X)|| = [|X|. One ad-  (w},ws, F*) is unique up to an orthogonal transformation.
vantage of this sensor representation is that the Euclideant is clear that one cannot get a smaller solution since, if
velocity induced by an angular velocity € R? is simply: w1, we and F solve Egs. 4, 5), then, by virtue of the rela-
tion (Rw) x (RF) = R(w x F),one haskR - DxF (X) -
wx F(X). Vi (X) = (Rw;) x (RF (X)), so thatG = R o F and
w! = Rw; also solve Eqs 4 5), for any orthogonal trans-
We will plainly call a mapping’ “a sensor”. formation (identified with an orthogonal matri®).

The input for our problem consists in two vector fields  This indeterminacy allows to restrict our attention, with
expressed in sensor coordinates, which we will representho loss of generality, to solutions of the formy, =

by two smooth functiond/;, Vs, definedR?® — R3 s.t. [0, 0, 1] andws = [0, 71, 2], for some unknow;,
Vi(X)"' X = 0andV; (AX) = AV; (X) forall X € R®  andns.
and)\ € R*. Thatis, theV; are vector fields on the unit Question 1 is about calibrating from flows obseresd

SpherGQ. In order to represent a 2D vector fieldefined on  erywhereon the sphere. In practice, few sensors are truly
[—1,1]" by a 3D vector field” (we omit the index when  omnidirectional and it is more realistic to ask whether two
considering a single field), we use the usual homogeneousiows, observed only on a “little part” of the sphere, allow

coordinate mappin@ to calibrate a sensor.
T (z) = 1 x 2) Question 2: Same as Question 1, but assuming thatithe
Vitzrz |1 andF are only defined on a sét that is a simply con-

. . nected open set on the unit sphere.
from R? to the upper half-unit sphere. By chain-

differentiation, one easily sees that the fieldsandv are

In this paper, we do not attempt to answer this question by
related by

a proof, but instead:
V(T (z)) = DT (x) v (2). ©)
1. formulate Question 2 as a question about the solutions

Other similar relations between velocities expressedfin di of a differential equation.

ferent coordinate systems will be used below, e.g. in

Egs. ¢, 9). 2. Present a discrete analogue to the smooth calibration
Going back to our calibration problem, we know that problem.
there exist angular velocity vectots, w; € R3, distinct
and nonzero and a sensbr, s.t. for all X, the following 3. Explore numerically the properties of Question 2 in the
equalities hold discretized model.
DxF*(X) - Vi (X) = wjxF*(X) and 4. Propose an algorithm to solve the discrete problem and
Dy F*(X) Va(X) = wixF*(X). show its results on synthetic data.

These equations relate velocities expressed in Euclidean ¢ Having defined our objectives, we may now present the dif-
ordinates (rhs) with velocities in sensor coordinaté. ( ferential formulation of Question 2.

Question 1: What is the set of tripletéo; , wo, F) consist- 3. Differential formulation
ing of two distinct nonzero vectors & and a sensor,

s.t, forallX € R% one has To re-state the problem in terms of differential equations,

we expresPx F' as a function off’, of theV; and ofw;.
Litis necessary to use the oriented projective plane, sisemsor may 1 his is done by exploiting properties 6fand the relations
span more than one hemisphere. betweenF and theV.
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Figure 1. Left: The disposition of pixels in the Euclideaam#. A pixel is located at each vertex in the grid. Middle: flow as it occurs
in the Euclidean image plane. Right: the flow as it is obseimgiixel (sensor) coordinates.

First, by the homogeneity properties 8% F (A X) =
AF (X), one gets the (column) vectorial equation:
F(X +hX) - F(X)

h

DXF(X)-X:%iE% F(X).

(7
Then we join this to the two (column) vectorial equatiofs (
5), and obtain the matrix equatior®x F [V, Va, X]
[w1 X F, ws x F, F]. Right-multiplying each side by the
inverse of[Vy, V5, X] (wherever it may exist) yields the
nonlinear equation

DxF =[wy X F,wy x F, F]-[Vi, Vo, X]7",  (8)

that relateDx F' to F', V; andw;, as desired. This equation
holds in all points inO whereV; andV; are linearly inde-
pendent, that is, in all point¥ in O s.t. F' (X') does not lie
on the plane formed by the optical centér0,0) and the
axeswi, we. Question 2 can now be formulated as:

We assume that vector motion valugs ,,, i € {1,2},
m e {1,...,M}, n € {1,...,N} have been observed
on a grid of pointse,, , of the sensor image plane and we
have mapped these values to 3D vector motMﬁgl, us-
ing Eq. @) and @). In this section, we will represent
by a3 x M N matrix, written “F"” too, where each column
represents the value df at a 3D pointX,, , on the unit
sphere:

F=[F(X11), F(X21),...F(Xun)|,

so that each column of has unit norm. In addition, the
solutionsF’ that we seek has full rank (i.e. rank three), since
the sensor is a diffeomorphism.

4.1. “Linear” solution

In the finite element model of’, we approximate
DxF at a grid pointX,, ,, (not on the border) by solv-

ing the relationsDx F (X,n) (Xomt1.n — Xm—1.n)
F (Xm+1,n)_F (Xm—l,n)+0 (HXm-i—l,n - Xm—l,nH2)v

DXF (an) (Xm,nJrl _Xm.,nfl) F(Xm,nJrl) -

F (Xm,n—l) + @) (HXm,n-ﬁ-l - Xm,n—l”) and
DxF (Xpn) Xmn F (Xonn), which yields the
This paper addresses neither this last question nor Questinite difference scheme

Fion 2 on theoretical grounds: Neither does it attempt to  p, f(x
integrate Eq. §) locally numerically. Instead, we turn to

practical ways of determining globally;, ws and F' that
solve equations4( 5).

Question 2": Given V; and V5, does there exist values of
w1, wo and a sensof’ that solves Eq.§) and under
what conditions is this sensor uniquely determined (up
to an orthogonal transformation) by the?

mn) ~

[Fm-i—l,n - Fm—l,na Fm,n-{-l - Fm,n—h an]
[Xerl,n - mel.,na Xm,nJrl - Xm,nfla an]71 .

9)

At border point, the symmetric difference is replaced by for

ward or backward differences, which are less accurate. To

In this section, we show how to estimate the sensor ge—'SOIateF in Eq. (), we write
ometry from two flows generated by purely rotational mo- DxF (Xmn) =~ FKpp,
tions of the camera. The method described here relies ' "
mostly on linear algebra. We also give a glimpse of a whereF = [F 1, F21, ... Fy ] @ndK,, , holds the co-
method that attempts to solve the calibration in the least- efficients of Eq. §). The relations4, 5) between the ob-
square sense, in image coordinates. served flow and the 3D motion thus become, omitting the

4. Discrete formulation



superscript index, FKy nVinn = SuFmn. Grouping [f1, f2, f3]T belongs to the nullspace dt;". Since, in
all the M N x 1 vectorsK,, ,V,,., into a single matrix practice, K| has corank one, the third row d@f, f; , is

K = [K11Vi1,K21Va1,..., Ky nVarn], One obtains  given, up to a scale factor, by the “last” left singular vecto
the relation of K;. Then, the relatiorf; Ko = —vof," gives usfi,
FK = S,F, (10) up to a scale factor. Finallyf,’ K1 = —6,f, yields fs,

hereS . . is th ari up to a scale factor. The row span Bf(i.e. the span of
where5,,, sometimes writterk],, is the Rodrigues ma- FT) being that of these scaled versions of its rows, we are

trix of w. Nof[e that it _vv_ould_ be more correct to write ;. ocure to compute spanfrom the K; and represent it
FK ~ S, F, since the_ f|n|t_e differencing embedded fin by a3 x M N orthogonal matrixU.

induces some approximation error, even when the _values Note that another estimate can be computed by exchang-
Vin,n verify Eq. (4) (or 5) exactly. Note also that, if” is ing the roles ofk; and K, and that these estimates do not

Imear,. then Eq.10) holds exagtly. Since the only linear necessarily agree. The two estimates can be merged by ad-
mappings that preserve the unit sphere are orthogonalftranshOC means

formations, Eq. 10) holds exactly holds only for sensors
that are orthogonal transformations.

Since F' can only be estimated up to an orthogonal 4.1.2 Determining,, v, and . from the row span of
transformation, we can, without loss of generality, assume F.
that the axis of the first rotation is of the form =
[0, 0, 1] and that of the second rotation is of the form
w2 = [0, 71, 12|, for some unknowrd;, v; and~.. The
constraints from which we wish to estimakg 64, v; and

If U is an orthogonal matrix that forms a basis of the row
span ofF', then F' can be written' = AU, for some in-
vertible matrix A. Egs. (L1 and 12) can then be written
AUK; = S;AU, which impliesUK;U"T = A~1S;A, so

72 are thus: thatU K;U " is similar to.S; and its eigenvalues are th0s
and=i ||w; |
[0 -6, 0 Computing the eigenvalues 6fK;U T thus yields esti-
FK, = ¢p 0 0 |F and (11)  mates of|f;| and /77 + 3. In practice, ifU is inexact,
0 0 O the matrixU K;U T may have three real singular values, in
—_— which case our method cannot estimate the corresponding
k], =51 angle. This is a similar problem to that &f fand [1 7], with
0 - 7 the difference that, due to the nature of the matrix, this oc-
FKy; = ge! 0 0 | F (12) curs much more easily and, in practice, our computations
L -2 0 0 are extremely sensitive to noise.
lwal, =52 Once we haved, | and \/vi + v , and due to the in-

herent ambiguity in the problem we address, we may re-
Our problem is thus, given th&;, computed from the  Strict ourselves to the cage > 0, y1 = w2/ cos (1) and
V;, to determine thé,, ~; and~, for which Eq. ((1and12) Y2 = |lwz| sin(7), for somer € [—m/2,7/2[. Also note
admit a solutionF", or, equivalently, the,, v, and~, for ~ that, if one knows#); and they;, then the relation
which the nullspaces of theVf N x 3M N matrices

|: éUK;UT ®I3) — (I3 ® 51) vec(A) = 0oy

L = (K ®I3) - (Iuy®S:) and UK UT ®I3) — (I3 ® S2)
Ly = (K;@Ig)—(IMN(X)Sg) B(7)

(13)
have a non-empty intersection - preferably of dimension holds, where ve¢A) is the vector of the 9 elements df
one. Our problem is thus different from solving a system [10]. Moreover, in practiceB (7) is only rank-deficient for
“AX + X B = 0", since we do not knowA” -in our case, the correct value of, and then by one. Thus; can be
the Rodrigues” matrices- entirely. estimated by minimizing the least singular valueB®fr),

In order to solve this problem, we tailored an algorithm on the interval—/2, 7/2[, a simple 1D minimization task.
in two steps, plus a third refinement step. These steps ardrigure2 shows typical curves of the two smallest singular
now described: values of B (1), for 7 € [—m,n]. In addition to clearly
displaying the symmetry of the curves, this figure also con-
firms that the two smallest singular values are distinct, so
that there is a uniqud (up to scale) that solves EdL3).
First, we may determine the third row df: from the Obviously, the aspect of the curve changes when different
third row of Eq. (L1), one sees that the third row éf = motions and sensors are used, but these properties persist.

4.1.1 Determining the row span off’ from the K;
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Note that this also yieldd. However, we observed that , —
the estimateF" = AU is very distorted, so that the final ' “Sifhe” sensot " Log-polar sensor’
estimate off" is given by the following method: Figure 3. The two types of sensors that we consider.

4.1.3 Refining wherex andy take regularly-spaced values in the interval

We now show how to refine the estimate 6f Fixing, in [-1,1] (again, means equality up to a positive scale factor).
Egs. (L1, 12), F' to the value obtained by the above method, Finally, thelog-polar sensoshown in Fig.3, bottom, right,
yields equations that are linear @, v; and~,. We obtain which is defined by the mapping

new estimates of these values by solving these equations in ) i

the least-squares sense. We then re-compute the matricest; (p, ¢, 1) ~ (10 T cos(mp), 1072 sin (7o), 1) .

Ly and L, with these new values @k, v; and~vs. Finally,

we re-compute”, up to a scale factor, as the nullspace of where the values g5 and¢ are regularly spaced in the in-

the matrix [L{ LQT]T, estimated by the SVD of this ma- terval[-1,1].

trix. We found that, due to the conditioning of tte, this All the pairs of flows used here correspond to randomly
is preferable to estimating the nullspace of the smaller ma-chosen rotation axes; forming an angle o2 /3 (other
tricesL| Ly + Lg Lo. values give similar results) with norm drawn randomly and

Note that the methods of this and the previous section douniformly in [0.15, 0.30].
not guarantee that the columnsiBfwill all have the same
norm. In this paper, we normalize each column as a final4.2.1 Unicity of the solution to Eq. (L1, 12)
computation step.

Another limitation is that the sensdr may “cross it-
self,” i.e. not correspond to an injective mapping, as wall b

In order to determine whether the least-squares solu-
tion F, 61, 71, 72 to Egs. (1, 12) is unique, we

illustrated in the next section. study the two smallest singular values of;, Ly ] ,
as functions of (61,71,72), in the neighborhood of
4.2. Numerical experiments the true values(07,~5,~3).  The solution will be

unique if 1) the smallest singular value; is dis-
tinct from the second smallest, and 2) the mini-
mum of the smallest singular valug is isolated. We
inspect these three-dimensional functioms(61,y1,72)
and o3 (61,71,72) by looking at three of their one-
dimensional slices: s;1(¢) = o;((1+¢)61,71,7%2),
Si,2 (E) = 0; (91, (1 + E) Y1, (1 + E) ’}/2) and 5,3 (E) =

0i (01,7 — €y2,72 +e71). In geometric termsg; 1 (¢)
shows the effect of a perturbation of the angular velocity
<37rx) 1) w parallel to itself,s; ; shows the effect of a perturbation

4 of wy parallel to itself, ands; 3 (¢) shows the effect of a

In this section, we consider four types2sfx 20 sensors.
First, theidentity sensoi” (X) = X, displayed in Fig3,
top, left; we will also use its variant, th@thogonal sensqr
F (X) = RX, for some random orthogonal mati Sec-
ond, in Fig.3, top, right, thehomography sensatefined by
F(X) ~ AX, whereA is a randonB x 3 matrix. Third,
the sine sensoshown in Fig.3, bottom, left, with pixels
disposed at positions

1 1
Fs (17,%1)” (Ia 51]4—58111



angular velocitiegw; || are well defined by the matricds

and L., while the angle between the axes is not, due to the
flat region around the minimum &f, 3 (¢). Since this flat
region directly challenges our ability to estimate theac-
curately, determining the factors that influence the exaént
this floor appears as important subject for future investiga
tion.

Having presented an important limitation to the estima-
tion of the angular velocities, we now show how the algo-

\\‘ y ‘ rithm presented in the previous section behaves, in spite of
. \ / | this limitation.
' : \ f 4.2.2 Calibration experiments
\ p
| \ ’ We now present results of the steps described in Sets-
R ——— \/ - 4.1.3 The first row of Figuré shows the flow as it appears

-0.06 -0.04 -0.02 o 0.02 0.04 0.06

in the Euclidean image plane. The second row shows the 2D

~2 are perturbed in the three directions described in the Te: pr(gicilon of the reSl:jlt qfhaphplylng the stepssm Sgt:"l
with a sine sensor. The steepest curv& is (), the second steep- and4.1.2 S“p‘?rpose With the true sensor. Since t ,ese re-
est issa; (2), while ss; (¢) has a wide, slightly concave, floor ~Sults are obtained up to an orthogonal transformation, we

around the true value. Bottom: with an orthogonal sensgy. (<) align the true and estimated sensor by 3D procrusies |
reaches a (shallow) minimum in 0. The third row shows the result of the method of Se¢.3
The first column of Figure& shows that the methods
) ) ) o of Secs.4.1.2and4.1.3both yield the exact sensor in the
perturbation ofv, orthogonal to itself, while staying inthe 556 of the identity sensor, for which differentiation by fi-
(w1,w2) plane. . nite differences is exact. The same can be observed with
We do not need to plot the, ; () here, as their values 5y orthogonal sensor. The success of our method in these

are much greater than that of the; (¢). This indicates  cases strongly points towards the unicity of the solution of
that, for fixedw;, the smallest singular value is isolated, so gqs. (11) and (12).

there is a unique (up to scal&)that solves Eqs1(l, 12) in
the least-squares sense.

Figure4, top, shows the curves 6f ; (¢), 1 < j < 3,
fore € [-1/4,1/4], computed for a “sine” sensor, while the
bottom curves correspond to an orthogonal sensog for
[-0.06, 0.06]. The results of this experiment do no vary
greatly with different sensors and motions. One important
fact showed by these curves is that the minimayef <) and
s12 () are sharply defined, indicating that the amplitude o
the angular velocitiefw; || are well defined by the matrices

L1 andL, at least near the true values. This conclusion can imati tthe si tail
also be reached analytically. estimation ofthe sine sensor fatis.

The most important fact in this figure is thats () has The Ia§t colgn_m shows that the reconstruction becomes
a wide floor around. For the sine sensor, this function is €SS precise still in the case of the “log-polar” sensor - the
actually concave in 0, while it is convex for the orthogonal feconstruction displayed here is a particularly good-ingk
sensor. In both cases, the extreme flatness indicates ¢hat thon€- Itis common that the estimation of the log-polar sensor
angle between, andws is, at best, poorly determined by ~fails.
Egs. (L1, 12). Comparing the second and third rows plainly shows that
The extent to which this indeterminacy is caused, on the the method of Sect.1.3yields better results than that of
one hand, by numerical approximations in the matrisgs ~ Sec.4.1.2
and their ill-posedness and, on the other hand, by a genuine In particular, the estimated sine and log-polar sensors
ambiguity is unclear. shown in the second row do not correspond to diffeomor-
To summarize the results experiment, it shows that the phisms, as they have overlapping sections.

Figure 4. Smallest singular value pf{ , L; |, when6;, ; and

The second column shows that the reconstruction be-
comes inexact when the sensor is not an orthogonal trans-
formation, but just “collinear” to a general homography.
The quality of the reconstruction displayed here is typical
of what is obtained when reconstructing a “homography”
sensor.

The third column shows that the reconstruction becomes
f less precise in the case of the “sine” sensor - the reconstruc
tion displayed here is typical of what is obtained when re-
constructing a “sine” sensor. It is not uncommon that the
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4.2.3 (Hyper) Sensitivity to noise in the observations 5. Conclusions

When one adds even tiny amounts of noise to the observa- Without answering Questions 2 and 2’ by mathemati-
tions, our method ceases to produce meaningful results. ltcal proof, we have presented numerical results that provide
will occasionally produce recognizable results with 50DB some insight on the self-calibration problem. These result
of noise, i.e. when the error in the observations has a stan-could be coherent with either a unique solution (up to an or-
dard deviation of approximately 0.3% of the flow ampli- thogonal transformation), or a continuum of solutions. Al-
tude, a level much smaller than real-world levels. Figiire thoughanswering these questions in a definitive mannkr stil
shows the output of the method of Sdcl.2(left), of that appears as a major challenge, the fact that orthogonal sen-
of Sec.4.1.3 (middle) and of a method which minimizes sors are perfectly reconstructed by our method draws a case
the sum of squared residues in image space over all possifor the unicity of the solution, at least for that type of sens

ble sensor geometries and angular velocity vectoieft), and for the conditions of our experiments.

and gives a clearly superior results. We have presented what is, to our knowledge, the first
We do not describe this last method here, because it isalgorithm to densely calibrate a non-parametric sensan fro
based on totally different principles and for lack of space. two motion flows generated by purely rotational motions.
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Figure 6. A successful reconstruction in the presence afenai a level 50DB. From left to right, the results of the mdtbbSec.4.1.2
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We have presented its results together with its limitations [5] R. Hartley. Self-calibration from multiple views with r@-

which may be inherent to the problem at hand. tating camera. Irproc. ECCV pages 471-478, 1994.1,
In the process, we found some numerical evidence that 4

the ambiguity in self-calibrating from two motion flows in-  [6] R. Hartley and A. ZissermanMultiple View Geometry in

duced by pure rotations could be greater than just an orthog- Computer VisionCambridge University Press, 200Q.

onal transformation. However, it remains unclear whether (7] 3 Heikkila and Olli Silvén. A four—step camera calibieat

this ambiguity is due to numerical approximations in the procedure with implicit image correction. proc. CVPR
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