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Abstract

This paper considers the problem of 3D reconstruction frénp&ints in one
or more images and auxiliary information about the corresiimy 3D fea-
tures : alignments, coplanarities, ratios of lengths orregtnies are known.
Our first contribution is a necessary and sufficient criterilbat indicates
whether a dataset, or subsets thereof, defines a rigid reeaotisn up to scale
and translation. Another contribution is a reconstructizethod for one or
more images. We show that the observations impose lineatr@imts on
the reconstruction. All the input data, possibly comingiirmany images,
is summarized in a single linear system, whose solutiordgi¢he recon-
struction. The criterion which indicates whether the doluis unique up to
scale and translation is the rank of another linear systafteccthe “twin”
system. Multiple objects whose relative scale can be ariitrchosen are
identified. The reconstruction is obtained up to an affinedf@mation, or,
if calibration is available, up to a Euclidean transforroati

1 Introduction

Reconstructing static scenes with some geometric streidtas recently drawn a lot of
attention [4, 11, 5]. By structure, it is meant that some e&8D points verify properties
of coplanarity, alignment or symmetry or that some distaati®s are known. This situ-
ation is of practical importance because it is common in mmale scenes and because it
may allow to obtain reconstruction from a single view. Poblgsapplications can be found
in urbanism (virtual models of existing or ancient buildéhgeisure (models for virtual
reality), real-estate (models of inside and outside of bews appartments) etc.

The geometric information is given a-priori, as in [4, 1123,

There are two main contributions in this paper. The first isi@idon that indicates
whether a given dataset defines the reconstruction of oneor abjects up to scale and
translation. This criterion is calculated as the rank of drixnantroduced in Section 5.3
and is insensitive to noise. The second contribution is ahatefor obtaining a recon-
struction. All the input data, which may come from many imsgde “summarized” in a
single linear system whose solution gives the reconstctn the presence of errors in
the input image features, a least-squares solution is $¢8gh. 5.4).
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Figure 1: A simple 3D scene (left) and its reconstructiogh(t). If the bottom points were
not known to be coplanar, the relative scale of pyramid arttecuould be ambiguous
(middle).

We use three “predominant” directions, which form the basgist necessarily orthog-
onal [11, 12, 3]- in which reconstruction is obtained. Theaishing point$ of these
directions play a special role [3, 12, 2] and are assumed\e haen estimated [10, 9]
and given in the input data.

If the angles between the “predominant” 3D directions areskm partial calibration
of the camera can be computed from the vanishing points [18,12] and an Euclidean
reconstruction will obtained. Otherwise, an “affine” restnction is obtained [6].

An example of input data is shown in Figure 1 (left). The pmadwant directions are
the “x”, “y” and “z” axes (“x” and “y” are aligned with the basef the pyramid). This
dataset consists of 11 points and some auxiliary informatithe 3D points (1-4), (5-7)
and (9-11) lie in a horizontal plane. Also, points (1,5)6j2nd (3,7) lie on three vertical
lines, and (s)he has said that point 8 is midway, along thea%s between points 9 and
10. The input data is precisely defined in Section 2.2.

Published methods use auxiliary information that involligrament, coplanarity [12,
2, 11], knowledge of world distances [3, 11] and angles. Addally, the versatility of the
method is increased by the use of known ratios of distancahid way, some symmetry
relations can be exploited. In all the presented experisdeesults (Sec. 6), some length
ratios are known, whithout which the reconstructions cowtbe obtained.

An important contribution of the proposed method is thattiedmines whether there
are many objects that can be scaled independently (Figareldlg)), and whether each
one defines a rigid reconstruction (Prop. (1-3)). In the $stirase, if no length ratios or
symmetries are known and if a single image is used, eachtdbjatways defined up to
a scale factor (Prop. (2)). In the more general case, eadtiotipef. 1 and 2 and Prop.
(1,3)) does not necessarily have a rigid solution, so itdésipensable to have a criterion
that indicates the nature of the solution.

2 General conditions

In this section the notation is introduced and the input dapaecisely defined.

1The vanishing point of a 3D direction is the image point in ethintersect all projections of 3D lines
parallel to that direction.



2.1 Notation

The three “predominant” 3D directions are calked v, andvs. Points inR? are always
represented by their coordinates in the bdsis, v, vs}. We definee; = [100]T,

e; =[010]",es =[001]". Lines in the image are represented by & 1 vectorl. The
set of points contained in the line {x € R?| [x" 1]1=0}.

2.2 Input Data

The input data consists in 2D points in the image(s) aoxiliary information which
indicates geometric properties of the corresponding 3[@aib] The image points can
be given in the pixel coordinates or, if calibration is kngumthe Euclidean coordinate
system associated with the camera.

2.2.1 Image features
1. Image pointx;, ..., xp, projections of 3D pointXy, ..., Xp.

2. The vanishing points of the 3D directions, vo, vs. If F' > 1 images are available,
the vanishing points are called ,i € {1,2,3}. Each one is & x 1 vector of
homogeneous coordinates. These vectors [1] form the timstecBlumns of the
projection matrix (See Eq. (2)).

2.2.2 Auxiliary information

1. Knowledge that some observed 3D points belong to planesi@ato two of the
canonical axes. Each plane is expressed as a list of (indiemage features.
For example, in Figure 1, the user would have specified thatp¢l-4) lie on a
horizontal plane etc. Lines are formed by the intersectidwo planes.

2. Information on ratios of distances taken along predontidaections. For exam-
ple, the distance along the “y” axis from point 9 to 8 is eqoahtat from point 8 to
10. We call this informatiofimetric information”.

3. Ifmany images are available, one knows which image eadie2re comes from.

Note that, when many images are given, planes may contantspoiserved in different
images. A 3D pointvisible in many images can be “tracked” bffrdng a “x=constant”, a
“y=constant” and a “z=constant” plane that contain all thgj@ctions of that point. Also,
metric information may relate points visible in differentages and the related distances
may be taken along different axes (See Sec. 6).

Auxiliary information is given through a text interface,thyraphical interfaces can
be imagined [4]. We do not know of automatic ways of obtairangilliary information
from 2D points, much less from images, except in simple cases

3 Use of auxiliary information

First, the set of distinct coordinates needed to describ8ihdata is determined and coor-
dinates are related to image features. Then, using themirfiormation, the coordinates
are expressed as a linear function of a subset of coordiaatksf signed distances.



Consider, in the input data in Figure 1 (left), the line (110,1Since this line is par-
allel to the “x” axis, the coordinates of these points aretaf form[Cy, C2, C3] and
[C4, Cy, Cs] respectively. The second and third coordinates are id@nfitien, consider-
ing that the line (9,10) is parallel to the “y” axis, the coiprates of point 9 are necessarily
of the form[C1, Cs, Cs]. By using all the user-supplied information, the set ofidist
3D coordinate®’;, ..., Cy is identified, and one knows the correspondance between 2D
points and 3D coordinates. This is easily implemented ubagic set operations. The
distinct coordinates are grouped in a vedibe [C1, . . ., CN]T.

Then, knowing that some distances, taken along coordixatg are equal, or have a
known ratiou yields constraints of the form :

Ci—Cj :U(Ck —Cl).
Defining the signed distand® = C}, — C}, one gets

C, = Ci+W
C, = Cj+’LLW,
or, in matrix terms,
Ci 1 u
c; | |1 C; 0
o= La ]
C 1 T 0 w
—— ° S~——
B U

The values olC;, C;, C, andC) are uniquely defined b¥’;, C; andW. Using all the
user’s input,C is represented as a linear function of a sub-ve€grand of a vector
signed of distance®V = [Wy, ..., Wp/]':

C = BCy + UW. (1)

The choice of matrice® andU is not unique. One possible representations is chosen
that minimizes the sum of lengths €f; andW and also minimize the length &V. If
no metric information is used3 is the identity matrix and/ is a zero-column matrix.

4 Use of image features

We now show how the observations impose linear constram@pandW. The obser-
vation are produced by a pinhole camera. The projection 8fpdntX with coordinates
[C1,Cy, 03]T (in basis{vy, v2,v3}) to a2D pointx = [z, x2] can be modeled as [8]:

H]:A[rl r 13 —RT]{}I(] )

for some\ € R. Here,T is the vector of (unknown) coordinates of the optical center
If the projection[x ' 1] " ofa point with coordinate€'e; +C'e; +C"e;n is observed,
one may [8] build the 2D liné passing through that point and any one ofthe

1~rix{’1‘]. 3)



This 2D line is moreover the projection of the set of pointdwagoordinates :
{Y | dpeR, Y = pe; + Cley + C”eirr} . 4)

The projection of a 3D point belonging to this line has thexfor

{ y ] = )\[ r, r, rs ] (ne; + C'ey + C"ey) — ART

1 (5)
= A(pr;+C'ry +C'"ry — RT)
If C', C" andT are not known, but the user has localdd the image, one has a
linear constraint orf’, C”" and'T : any 2D pointy in 1 verifies[y " 1]1 = 0, so that,
after expansion, one has :

0 = ITI'l'/ C, —|— ITI'@'IIC” — ITI‘ir Ti’ — lTriHTiH (6)

This equation is a linear equation in the coordinates arilil.ifOne verifies that the
three constraints given by each point (one constraint peiskiang point) form a system
of rank two only.

5 Solutions to the reconstruction problem

The coordinates, distances and camera positions ares®udf a linear system obtained
from the above-described constraints. This system may gmoedefine a unique recon-

struction up to scale and translation. In the absence oénoithe observation, the ranks
of certain subsystems indicate whether this is the caséelpitesence of noise, the rank
is altered, but a “twin” system may be built whose rank intksavhether the input data

defines a reconstruction that is unique up to scale and &i@os!

5.1 Linear system

Concatenating Equations (6) obtained from the input date, abtains a system df/
equations :
T

[AB|AU]{%‘;]+L Dl = Owm 7)
Tp

whereA is the M x N matrix of coefficients that multiply th€’; andL, M x 3F,
multiplies theT ;. We use the abbreviatiods = [AB | AU], andV = [Cy; W].

Row and column permutations may expose a block-diagonadtsire inE. Each
block corresponds to one “connected” object in the inpud datd we will use the terms
“block” and “object” indifferently. Each block of corresponds to a subset (defined by
the columns of the block) of coordinates¥y, and a subset (defined by the rows) of 2D
features. We will say that block, is visible in the images in which the 2D features
appear.

Itis assumed thdE L] is itself single-block. If this is not the case, the data edr
totally unrelated data sets. Each one can be treated selyasstdescribed below.



After identifying, in E, blocksEy, . .., Eqg (if any) that are visible in one image only
and grouping the remaining blocks (if any) &1, Eq. (7) becomes :

E Vv L
1 .1 .1 r]:\1
B V + L: : = (DM><17 (8)
@ E' V? LC[) TF

Here, V has been split intdvy,..., Vg andV'. EachL, is decomposed i, =
[L}...LL], where each.] has three columns and multiplies one of fhg.

5.2 Nature of solutions : corank criteria

Def. 1 : We say that the reconstruction of blogkvisible in imagey, is uniquely defined
up to a scale factor if and only if there is\&; such that for allV,,, T, that solve
E,V, + LT, = 0, there is a scale factov, such thatV,, is of the form :

V,=\Vi+5,T,. ©9)

HereS, is defined in the following way : row numberof S,, if it corresponds to

a coordinate”y;, taken along thg’th axis (1, 2 or 3 for “x”, “y” and “z"), is equal
to ejT. Otherwise, if it corresponds to a distaneg it is equal toO1 3.

Equation (9) clearly displays the “scale and translationéipretation), being the scale
andS, T, the translation in the coordinates.

From now on, we assume that all the are distinct and all th&/; are nonzero. One
then has the following propertiés

Prop. 1 Reconstruction of block is uniquely defined up to a scale factor if and only if
E, has corank equal to one.

Prop. 2 All blocks E,, defined without metric information have corank equal to one.
We now turn to the rest of the system :

Def. 2 We say that there issingle rigid solutiorto the system

T,
E'V +L : =0 (10)
Tp
if there exist some vectorATs, ..., AT € R3 andV'* such that for allV’,
T4, ..., Tr that solve (10), there exists a scale fact@uch that
T; = MT;+T;, fe{2...F}and (11)
V' = AV*+8T,

2Demonstrations are not given to save space. They appearirige submitted to a journal.



Note that, in this definition, all the camera positions ar&uely defined byT;. Also,
there is a single scale factor, evefif can be block-diagonalized in more than one block.
The following property holds :

Prop. 3 There is a single rigid solution if and only[iE’ L’] has corank four.

Properties (1-3) hold for all possible sizes of tigandE'.

5.3 Corank criteria in the presence of noise : twin matrices

The criteria given in Prop. (1-3) are valid when there are mors in the input image
features. In the presence of errors, the rank of submatic&sand[E L] is altered, so
that the corank criteria proposed above cannot be usedlglirdlowever, a “twin matrix”
may be built, that has the rank tH#t L] would have in the absence of noise. The corank
criteria are used on the twin matrix.

The twin matrix has the same shdmes[E L]. Distinct coordinateC and camera
positionsT are generated randomly. The 3D lines Eq. (4) corresponditigeise coor-
dinates projectin 2D lines :

1~ (C" =Ty ) sy — (C" = Ti) sim (12)

where[s; s, s3] = R~ . The twin system is built from these lines in the exact samg wa
that[E L] was built from the lines Eqg. (3). One shows that noise in théskang points
does not alter the rank of the twin matrix. In consequencehn matrix has the rank
that[E L] would have in the absence of noise. Using floating-poinharétic, the rank
of the twin matrix can be reliably computed [7], which guaess that the corank criteria
Prop. (1-3) can be computed from the twin matrix.

5.4 Computation of solutions

In this section, we show how to compute vect®is V'* andAT; from the matri{E L]
and how to obtain a particular solution to Eq. (8).

In the absence of noise and B’ L'] has corank fou'V* andATs, ..., ATy verify
AT,
E'V*+L" : = Omxi,
ATr

whereL" is obtained by removing the first three columndin(which correspond t@ ).
Clearly, in the absence of noigé&’ L] has corank equal to one. In the presence of noise,
this is not the case any more, but the singular vector [{EBTL"] corresponding to the
least singular value may be taken as an estimaf/6f AT,;...; ATg]. TheV; are
likewise estimated by the singular vectorsgf corresponding to the least singular value.
A particular reconstruction is given by :

V,=AVi+S,T(pef{l...QY)andT; = AT, + T, (f € {1...F}) (13)

for somel,...,Ag, N € RandT; € R3.

3Zeros occur at the same places in both matrices.




Figure 2: Original image (left) and two views of reconstiant

5.5 Summary of the reconstruction algorithm

Identification: ldentify distinct coordinates and distances and the cpmedence be-
tween these and the observations.

Lines: For each 2D poink;, build the lined ~ [x; 1] x r; between; and two at least
of the vanishing points; in that image.

System: Using the lines obtained above, build the matriéesndL of the linear system.
Block-diagonalizé E L] and apply the following steps to each block.

Twin system: Generate random distinct coordinates and camera poséiwhthe corre-
sponding observations. From these, build the twin matofds andL.

Factorization: FactorizeE in Ey, ..., Eg andE'.

Characterization: Determine the nature of the solutions from the rank of the twa-
trices of eactE; and of[E' L'].

Reconstruction: Compute a solution to Eq. (8) as proposed in Section 5.4.

6 Experimental results

In this section, experimental results are presented. lexa@mples, the reconstruction
basis is orthonormal.

Single image Figure 1 (right) shows the reconstruction obtained frondiu@ described
in the introduction, with the extra assumption that poibt§ @nd 9-11) are coplanar. The
vertical faces of the cube form an angle of 87 degree, whidltates that the Euclidean
structure of the scene is well captured.
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Figure 3: Two indoor images, looking ahead and to the rigid, the reconstruction.

Figure 2 (left) shows an image with 122 points and (middight) two views of the
corresponding reconstruction. The length€hfC, andW are 151, 102 and 26 respec-
tively. Symmetry relations are needed to obtain a uniquefinéd solution.

Multiple images Figure 3 shows two indoor images, taken from almost the sdavep
at approximately right angle. 61 points were identified,abaing visible in both images.
The two images are connected only by two horizontal planeisifg and floor) and one
vertical plane : the left wall in the second image, which awpén the extreme right of the
first image. Without metric information, the system woulddirgle-block but without a
single rigid solution : the second camera could be trandfatevard arbitrarily. However,
by specifying that the two sides of the hall have equal lesgthe enforces the existence
of a single rigid solution : the distance from the left waltle first image (marked with an
“A") to the farthest door in the second image (marked “A-peitnis equal to the distance
from the right wall in the second image (marked “B-prime”)the farthest door in the
firstimage (marked “B”). Here, metric information relatesfures in different images.

7 Conclusions and future work

We have presented a method for 3D reconstruction from onease wiews based on
image features and auxiliary geometric information predidy the user. The main im-
provements in the proposed method are :

e A criterion, insensitive to noise, determines the naturéhefsolution, before the
reconstruction is attempted.



e Many images may be processed at once rather than sequgiaisath [11].

e Some symmetry relations and, more generally, knowledgéstdmce ratios along
the principal directions can be exploited.

The proposed method, which does not use special shaped,aduiflexibility to a system
such as [4], which requires object to fit in templates in itdahreconstruction phase.

If a probabilistic model of the error in the observations igeg, maximum likeli-
hood estimation could provide more precise and statisfichlaracterized solutions. The
present method could provide an initial estimate Maximwmlihood estimation is likely
to be implemented by an iterative process requiring anaingblution, which could be
provided by the presented method. Ongoing work also aimstanding the method
to handle more than three predominant directions and auxiinformation relating the
positions of the cameras.
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