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Abstract

This paper considers the problem of 3D reconstruction from 2D points in one
or more images and auxiliary information about the corresponding 3D fea-
tures : alignments, coplanarities, ratios of lengths or symmetries are known.
Our first contribution is a necessary and sufficient criterion that indicates
whether a dataset, or subsets thereof, defines a rigid reconstruction up to scale
and translation. Another contribution is a reconstructionmethod for one or
more images. We show that the observations impose linear constraints on
the reconstruction. All the input data, possibly coming from many images,
is summarized in a single linear system, whose solution yields the recon-
struction. The criterion which indicates whether the solution is unique up to
scale and translation is the rank of another linear system, called the “twin”
system. Multiple objects whose relative scale can be arbitrarily chosen are
identified. The reconstruction is obtained up to an affine transformation, or,
if calibration is available, up to a Euclidean transformation.

1 Introduction

Reconstructing static scenes with some geometric structure has recently drawn a lot of
attention [4, 11, 5]. By structure, it is meant that some setsof 3D points verify properties
of coplanarity, alignment or symmetry or that some distanceratios are known. This situ-
ation is of practical importance because it is common in man-made scenes and because it
may allow to obtain reconstruction from a single view. Possible applications can be found
in urbanism (virtual models of existing or ancient buildings), leisure (models for virtual
reality), real-estate (models of inside and outside of houses or appartments) etc.

The geometric information is given a-priori, as in [4, 11, 3,2].
There are two main contributions in this paper. The first is a criterion that indicates

whether a given dataset defines the reconstruction of one or more objects up to scale and
translation. This criterion is calculated as the rank of a matrix introduced in Section 5.3
and is insensitive to noise. The second contribution is a method for obtaining a recon-
struction. All the input data, which may come from many images, is “summarized” in a
single linear system whose solution gives the reconstruction. In the presence of errors in
the input image features, a least-squares solution is sought (Sec. 5.4).
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Figure 1: A simple 3D scene (left) and its reconstruction (right). If the bottom points were
not known to be coplanar, the relative scale of pyramid and cube would be ambiguous
(middle).

We use three “predominant” directions, which form the basis–not necessarily orthog-
onal [11, 12, 3]– in which reconstruction is obtained. The vanishing points1 of these
directions play a special role [3, 12, 2] and are assumed to have been estimated [10, 9]
and given in the input data.

If the angles between the “predominant” 3D directions are known, partial calibration
of the camera can be computed from the vanishing points [1, 12, 8, 2] and an Euclidean
reconstruction will obtained. Otherwise, an “affine” reconstruction is obtained [6].

An example of input data is shown in Figure 1 (left). The predominant directions are
the “x”, “y” and “z” axes (“x” and “y” are aligned with the baseof the pyramid). This
dataset consists of 11 points and some auxiliary information : the 3D points (1-4), (5-7)
and (9-11) lie in a horizontal plane. Also, points (1,5), (2,6) and (3,7) lie on three vertical
lines, and (s)he has said that point 8 is midway, along the “y”axis between points 9 and
10. The input data is precisely defined in Section 2.2.

Published methods use auxiliary information that involve alignment, coplanarity [12,
2, 11], knowledge of world distances [3, 11] and angles. Additionally, the versatility of the
method is increased by the use of known ratios of distances. In this way, some symmetry
relations can be exploited. In all the presented experimental results (Sec. 6), some length
ratios are known, whithout which the reconstructions couldnot be obtained.

An important contribution of the proposed method is that it determines whether there
are many objects that can be scaled independently (Figure 1(middle)), and whether each
one defines a rigid reconstruction (Prop. (1-3)). In the simplest case, if no length ratios or
symmetries are known and if a single image is used, each object is always defined up to
a scale factor (Prop. (2)). In the more general case, each object (Def. 1 and 2 and Prop.
(1,3)) does not necessarily have a rigid solution, so it is indispensable to have a criterion
that indicates the nature of the solution.

2 General conditions

In this section the notation is introduced and the input datais precisely defined.
1The vanishing point of a 3D direction is the image point in which intersect all projections of 3D lines

parallel to that direction.



2.1 Notation

The three “predominant” 3D directions are calledv1, v2 andv3. Points inR3 are always
represented by their coordinates in the basisfv1; v2; v3g. We definee1 = [1 0 0℄>,e2 = [0 1 0℄>, e3 = [0 0 1℄>. Lines in the image are represented by a3� 1 vectorl. The
set of points contained in the line is

�x 2 R2j �x> 1� l = 0	.

2.2 Input Data

The input data consists in 2D points in the image(s) andauxiliary information, which
indicates geometric properties of the corresponding 3D objects. The image points can
be given in the pixel coordinates or, if calibration is known, in the Euclidean coordinate
system associated with the camera.

2.2.1 Image features

1. Image pointsx1; : : : ;xP , projections of 3D pointsX1; : : : ;XP .

2. The vanishing points of the 3D directionsv1;v2;v3. If F > 1 images are available,
the vanishing points are calledrfi ; i 2 f1; 2; 3g. Each one is a3 � 1 vector of
homogeneous coordinates. These vectors [1] form the three first columns of the
projection matrix (See Eq. (2)).

2.2.2 Auxiliary information

1. Knowledge that some observed 3D points belong to planes parallel to two of the
canonical axes. Each plane is expressed as a list of (indicesof) image features.
For example, in Figure 1, the user would have specified that points (1-4) lie on a
horizontal plane etc. Lines are formed by the intersection of two planes.

2. Information on ratios of distances taken along predominant directions. For exam-
ple, the distance along the “y” axis from point 9 to 8 is equal to that from point 8 to
10. We call this information“metric information”.

3. If many images are available, one knows which image each 2Dfeature comes from.

Note that, when many images are given, planes may contain points observed in different
images. A 3D point visible in many images can be “tracked” by defining a “x=constant”, a
“y=constant” and a “z=constant” plane that contain all the projections of that point. Also,
metric information may relate points visible in different images and the related distances
may be taken along different axes (See Sec. 6).

Auxiliary information is given through a text interface, but graphical interfaces can
be imagined [4]. We do not know of automatic ways of obtainingauxilliary information
from 2D points, much less from images, except in simple cases.

3 Use of auxiliary information

First, the set of distinct coordinates needed to describe the 3D data is determined and coor-
dinates are related to image features. Then, using the metric information, the coordinates
are expressed as a linear function of a subset of coordinatesand of signed distances.



Consider, in the input data in Figure 1 (left), the line (10,11). Since this line is par-
allel to the “x” axis, the coordinates of these points are of the form [C1; C2; C3℄ and[C4; C2; C3℄ respectively. The second and third coordinates are identical. Then, consider-
ing that the line (9,10) is parallel to the “y” axis, the coordinates of point 9 are necessarily
of the form[C1; C5; C3℄. By using all the user-supplied information, the set of distinct
3D coordinatesC1; : : : ; CN is identified, and one knows the correspondance between 2D
points and 3D coordinates. This is easily implemented usingbasic set operations. The
distinct coordinates are grouped in a vectorC = [C1; : : : ; CN ℄>.

Then, knowing that some distances, taken along coordinate axes, are equal, or have a
known ratiou yields constraints of the form :Ci � Cj = u (Ck � Cl) :
Defining the signed distanceW = Ck � Cl, one getsCk = Cl +WCi = Cj + uW ;
or, in matrix terms, 2664 CiCjCkCl 3775 = 2664 11 11 3775| {z }B � CjCl �| {z }C0 +2664 u010 3775| {z }U [W ℄|{z}W
The values ofCi; Cj ; Ck andCl are uniquely defined byCj , Cl andW . Using all the
user’s input,C is represented as a linear function of a sub-vectorC0 and of a vector
signed of distancesW = [W1; : : : ;WP 0 ℄>:C = BC0 + UW: (1)

The choice of matricesB andU is not unique. One possible representations is chosen
that minimizes the sum of lengths ofC0 andW and also minimize the length ofW. If
no metric information is used,B is the identity matrix andU is a zero-column matrix.

4 Use of image features

We now show how the observations impose linear constraints onC0 andW. The obser-
vation are produced by a pinhole camera. The projection of a 3D pointX with coordinates[C1; C2; C3℄> (in basisfv1;v2;v3g) to a 2D pointx = [x1; x2℄ can be modeled as [8]:� x1 � = � � r1 r2 r3 �RT � � X1 �

(2)

for some� 2 R. Here,T is the vector of (unknown) coordinates of the optical center.

If the projection
�x> 1�> of a point with coordinatesCei+C 0ei0+C 00ei00 is observed,

one may [8] build the 2D linel passing through that point and any one of theri :l � ri � � x1 � : (3)



This 2D line is moreover the projection of the set of points with coordinates :fY j 9� 2 R; Y = �ei + C 0ei0 + C 00ei00g : (4)

The projection of a 3D point belonging to this line has the form :� y1 � = � � r1 r2 r3 � (�ei + C 0ei0 + C 00ei00)� �RT= � (�ri + C 0ri0 + C 00ri00 �RT) (5)

If C 0, C 00 andT are not known, but the user has locatedl in the image, one has a
linear constraint onC 0, C 00 andT : any 2D pointy in l verifies

�y> 1� l = 0, so that,
after expansion, one has :0 = l>ri0C 0 + l>ri00C 00 � l>ri0Ti0 � l>ri00Ti00 (6)

This equation is a linear equation in the coordinates and inT. One verifies that the
three constraints given by each point (one constraint per vanishing point) form a system
of rank two only.

5 Solutions to the reconstruction problem

The coordinates, distances and camera positions are solutions of a linear system obtained
from the above-described constraints. This system may or may not define a unique recon-
struction up to scale and translation. In the absence of noise in the observation, the ranks
of certain subsystems indicate whether this is the case. In the presence of noise, the rank
is altered, but a “twin” system may be built whose rank indicates whether the input data
defines a reconstruction that is unique up to scale and translation.

5.1 Linear system

Concatenating Equations (6) obtained from the input data, one obtains a system ofM
equations : [AB jAU ℄ � C0W �+ L264 T1

...TF 375 = OM;1 ; (7)

whereA is theM � N matrix of coefficients that multiply theCi andL, M � 3F ,
multiplies theTf . We use the abbreviationsE = [AB jAU ℄, andV = [C0;W℄.

Row and column permutations may expose a block-diagonal structure inE. Each
block corresponds to one “connected” object in the input data and we will use the terms
“block” and “object” indifferently. Each block ofE corresponds to a subset (defined by
the columns of the block) of coordinates inV, and a subset (defined by the rows) of 2D
features. We will say that blockEp is visible in the images in which the 2D features
appear.

It is assumed that[E L℄ is itself single-block. If this is not the case, the data contains
totally unrelated data sets. Each one can be treated separately, as described below.



After identifying, inE, blocksE1; : : : ; EQ (if any) that are visible in one image only
and grouping the remaining blocks (if any) inE0, Eq. (7) becomes :26664 E1

. . . EQ E0 3777526664 V1
...VQV0 37775+ 26664 L1

...LQL0 37775264 T1
...TF 375 = OM�1; (8)

Here,V has been split intoV1; : : : ;VQ andV0. EachLp is decomposed inLp =�L1p : : : LFp �, where eachLfp has three columns and multiplies one of theTf .

5.2 Nature of solutions : corank criteria

Def. 1 : We say that the reconstruction of blockp, visible in imageg, is uniquely defined
up to a scale factor if and only if there is aV�p such that for allVp, Tg that solveEpVp + LgpTg = O, there is a scale factor�p such thatVp is of the form :Vp = �pV�p + SpTg : (9)

HereSp is defined in the following way : row numbern of Sp, if it corresponds to

a coordinateC0i, taken along thejth axis (1, 2 or 3 for “x”, “y” and “z”), is equal
to e>j . Otherwise, if it corresponds to a distancewi, it is equal toO1�3.

Equation (9) clearly displays the “scale and translation” interpretation,�p being the scale
andSpTg the translation in the coordinates.

From now on, we assume that all theCi are distinct and all theWi are nonzero. One
then has the following properties2 :

Prop. 1 Reconstruction of blockp is uniquely defined up to a scale factor if and only ifEp has corank equal to one.

Prop. 2 All blocksEp defined without metric information have corank equal to one.

We now turn to the rest of the system :

Def. 2 We say that there is asingle rigid solutionto the systemE0V0 + L0 264 T1
...TF 375 = O (10)

if there exist some vectors�T2; : : : ;�TF 2 R3 andV0� such that for allV0,T1; : : : ;TF that solve (10), there exists a scale factor� such thatTf = ��Tf +T1 f 2 f2 : : : Fg andV0 = �V0� + ST1 (11)

2Demonstrations are not given to save space. They appear in anarticle submitted to a journal.



Note that, in this definition, all the camera positions are uniquely defined byT1. Also,
there is a single scale factor, even ifE0 can be block-diagonalized in more than one block.

The following property holds :

Prop. 3 There is a single rigid solution if and only if[E0 L0℄ has corank four.

Properties (1-3) hold for all possible sizes of theEp andE0.
5.3 Corank criteria in the presence of noise : twin matrices

The criteria given in Prop. (1-3) are valid when there are no errors in the input image
features. In the presence of errors, the rank of submatricesof E and[E L℄ is altered, so
that the corank criteria proposed above cannot be used directly. However, a “twin matrix”
may be built, that has the rank that[E L℄ would have in the absence of noise. The corank
criteria are used on the twin matrix.

The twin matrix has the same shape3 as [E L℄. Distinct coordinatesC and camera
positionsTf are generated randomly. The 3D lines Eq. (4) corresponding to these coor-
dinates project in 2D lines :l � (C 00 � Ti00) si0 � (C 0 � Ti0) si00 ; (12)

where[s1 s2 s3℄ = R�>. The twin system is built from these lines in the exact same way
that [E L℄ was built from the lines Eq. (3). One shows that noise in the vanishing points
does not alter the rank of the twin matrix. In consequence, the twin matrix has the rank
that [E L℄ would have in the absence of noise. Using floating-point arithmetic, the rank
of the twin matrix can be reliably computed [7], which guarantees that the corank criteria
Prop. (1-3) can be computed from the twin matrix.

5.4 Computation of solutions

In this section, we show how to compute vectorsV�p,V0� and�Tf from the matrix[E L℄
and how to obtain a particular solution to Eq. (8).

In the absence of noise and if[E0 L0℄ has corank four,V� and�T2; : : : ;�TF verify :E0V� + L00 264 �T2
...�TF 375 = OM�1;

whereL00 is obtained by removing the first three columns inL0 (which correspond toT1).
Clearly, in the absence of noise,[E0 L00℄ has corank equal to one. In the presence of noise,
this is not the case any more, but the singular vector [7] of[E0 L00℄ corresponding to the
least singular value may be taken as an estimate of[V�; �T2; : : : ; �TF ℄. TheV�p are
likewise estimated by the singular vectors ofEp corresponding to the least singular value.
A particular reconstruction is given by :Vp = �pV�i + SpT1 (p 2 f1 : : :Qg) andTf = �Tf +T1 (f 2 f1 : : : Fg) (13)

for some�1; : : : ; �Q, �0 2 R andT1 2 R3.
3Zeros occur at the same places in both matrices.
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Figure 2: Original image (left) and two views of reconstruction.

5.5 Summary of the reconstruction algorithm

Identification: Identify distinct coordinates and distances and the correspondence be-
tween these and the observations.

Lines: For each 2D pointxi, build the linesl � �x>i 1�� rj betweenxi and two at least
of the vanishing pointsrj in that image.

System: Using the lines obtained above, build the matricesE andL of the linear system.
Block-diagonalize[E L℄ and apply the following steps to each block.

Twin system: Generate random distinct coordinates and camera positionsand the corre-
sponding observations. From these, build the twin matricesof E andL.

Factorization: FactorizeE in E1; : : : ; EQ andE0.
Characterization: Determine the nature of the solutions from the rank of the twin ma-

trices of eachEi and of[E0 L0℄.
Reconstruction: Compute a solution to Eq. (8) as proposed in Section 5.4.

6 Experimental results

In this section, experimental results are presented. In allexamples, the reconstruction
basis is orthonormal.

Single image Figure 1 (right) shows the reconstruction obtained from thedata described
in the introduction, with the extra assumption that points (5-7 and 9-11) are coplanar. The
vertical faces of the cube form an angle of 87 degree, which indicates that the Euclidean
structure of the scene is well captured.



B
3
4

567

11

30 31

32

34

38

46

1

98

13

10
12

14
3339

40

16
15 24 25

2322
29

41
42

27

44

28

264543

20 21

19
1817

2 36

37

35

Y
X

Z

A

10

15

891314

1

5

6 7

4

11

12

3

2

Y

Z

X

B’

A’

B

A

z
x

y

Figure 3: Two indoor images, looking ahead and to the right, and the reconstruction.

Figure 2 (left) shows an image with 122 points and (middle, right) two views of the
corresponding reconstruction. The lengths ofC,C0 andW are 151, 102 and 26 respec-
tively. Symmetry relations are needed to obtain a uniquely defined solution.

Multiple images Figure 3 shows two indoor images, taken from almost the same place,
at approximately right angle. 61 points were identified, none being visible in both images.
The two images are connected only by two horizontal planes (ceiling and floor) and one
vertical plane : the left wall in the second image, which appears in the extreme right of the
first image. Without metric information, the system would besingle-block but without a
single rigid solution : the second camera could be translated forward arbitrarily. However,
by specifying that the two sides of the hall have equal lengths, one enforces the existence
of a single rigid solution : the distance from the left wall inthe first image (marked with an
“A”) to the farthest door in the second image (marked “A-prime”) is equal to the distance
from the right wall in the second image (marked “B-prime”) tothe farthest door in the
first image (marked “B”). Here, metric information relates features in different images.

7 Conclusions and future work

We have presented a method for 3D reconstruction from one or more views based on
image features and auxiliary geometric information provided by the user. The main im-
provements in the proposed method are :� A criterion, insensitive to noise, determines the nature ofthe solution, before the

reconstruction is attempted.



� Many images may be processed at once rather than sequentially, as in [11].� Some symmetry relations and, more generally, knowledge of distance ratios along
the principal directions can be exploited.

The proposed method, which does not use special shapes, could add flexibility to a system
such as [4], which requires object to fit in templates in its initial reconstruction phase.

If a probabilistic model of the error in the observations is given, maximum likeli-
hood estimation could provide more precise and statistically characterized solutions. The
present method could provide an initial estimate Maximum likelihood estimation is likely
to be implemented by an iterative process requiring an initial solution, which could be
provided by the presented method. Ongoing work also aims at extending the method
to handle more than three predominant directions and auxiliary information relating the
positions of the cameras.
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Network ERB FMRX-CT97-0127.
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