
Performance evaluation of optical ow estimators:Assessment of a new A�ne ow method.Etienne Grossmann Jos�e Santos-VictorInstituto Superior T�ecnico & Instituto de Sistemas e Rob�oticaAv. Rovisco Pais, Lisboa, PORTUGALfetienne,jasvg@isr.ist.utl.ptAbstractOver the years, computer vision researchers have developed a number of algo-rithms to solve a large number of problems. However, most of the existing al-gorithms are not characterized in terms of their performance, accuracy, cost, etc.Consequently, it is hardly ever possible to compare and choose between these variousalgorithms to tackle a speci�c problem.One of the contributions of this paper is the introduction of a framework forevaluating the performance of optical ow estimators, which is based on classicalestimation theory criteria, and on considerations about the computation cost. Thisframework is general, and may be applied to other estimation problems.The optic ow is widely used in many vision systems. It is a vector velocity �eldde�ned on sequences of images. The A�ne Optic Flow is formed by the opticalow together with its �rst-order derivatives with respect to image coordinates. Asa second contribution, we present two new estimators for the a�ne ow. We justifytheoreticaly their design with hypotheses concerning the input images, which weshow to be empirically valid.Finally, we use the performance analysis framework in order to compare thea�ne ow estimators with a more classical \di�erential" method.1 IntroductionThe optic ow is de�ned as \the apparent motion of brightness patterns" in a sequence ofimages. It has been given many mathematical de�nitions, and many methods have beendevised to compute it [2].Very often, the optical ow is used as the input to other vision algorithms. Forexample, when identi�ed with the motion �eld (the [optic] projection of the 3D motiononto the image plane), it allows to compute structure and/or motion of the watchedscene. The optic ow and its (�rst) spatial derivatives together form the \a�ne ow",which is an even richer source of information, as shown in [14, 13]. An important and1



well-known aspect of the optic ow is that it is ill-de�ned : it is based on a model that isonly approximately correct. Knowing the nature of the error in this model is importantfor estimation algorithms. However, this point is poorly documented in literature, andwe attempt to gain some insight about it.One contribution in this paper, is constituted by two new estimators of the a�ne ow.Their design may be justi�ed theoretically when one makes some assumptions about theinput images. Furthermore, we verify experimentally the validity of these assumptions.Over the years, many methods have been developed in computer vision (e.g. edge de-tection, edge linking, feature matching, structure/motion-from-X, etc). These algorithmsare usually based on some assumptions about the input data. Very often, it does notappear possible to verify rigorously that these assumptions hold. The good functioningof the proposed method is taken as evidence that they are \su�ciently" valid.Our approach thus di�ers, since we present some (limited) numerical justi�cation ofour assumptions separately from the results given by our methods. The assertion of thegood functioning of a method also is a critical point. It is often done graphically, bythe display of results (e.g. of extracted edges, estimated ow). This gives a graphicaldemonstration of the functioning of the algorithm, and may provide some insight aboutit. Nevertheless, a need is also felt for more quantitative measures, that allow comparisonof di�erent methods, and/or quantitative modelling of the output of the system.There is no canonical method for asserting the performance of implemented estimators;the second contribution of this paper lies in the de�nition of such a method, based on thetwo notions :� \Accuracy" : Estimation theory provides tools to de�ne the quality of the output ofan algorithm. First, an error measure is de�ned and then its statistical propertiesare studied. Since analytical study of the performance appears very di�cult, werely on numerical measures. We discuss and justify the methods we used.� \Cost" : The cost at which estimates are produced. This is crucial in computervision e.g. in active vision, where there are time-constraints to be met. We discussthe notion of \cost", as it may have many interpretations.Only recently have these two concepts been studied jointly 1, e.g in [9]. To our knowledge,there are very few results linking the \quality" of an estimator to the \computational1\Experimental design", or \experience planning", goes in that direction, by considering the costat which one does observations. However, it usually considers the cost of doing computations to benegligible, contrarily to what is the case in computer vision2



cost" at which it is implemented. The main point in the methodology we adopted isthat we characterize estimators in terms of the \accuracy" obtainable for a given unit ofcomputational resource.The analytical calculation of the performance is a di�cult problem, and our approachrelies on analysing the results obtained by applying our estimates to various data sets.This approach requires some sort of \ground-truth" to be known. A common problem incomputer vision is that no ground-truth is available, for real-world data. For this reason,synthetic data is most often used. However, real-world and synthetic data being di�erent,one may argue about the \signi�cance" of this last approach. We show how substitutesto ground-truth can be used with real-world data (also with limited signi�cance).We identi�ed two reasons, common to many computer vision problems, for the absenceof ground-truth : The ill-de�nition of the estimated quantity (e.g. edge detection, opticow), and the approximate nature of the observation model (e.g. image noise).1.1 Structure of the paperWe briey introduce the optic ow in Section 2. In Section 3, we present the two newestimators together with a classical one, which is used for comparison purposes.Section 4 is devoted to the problem of performance evaluation of a given estimator,dealing with the error de�nition, performance characterization and cost analysis.The results obtained are described in Section 5. First, we address the problem of ver-ifying the validity of the various assumptions that we have previously formulated. Then,we present performance measures against various parameters, involving both syntheticand real-world data.Finally, in Section 6 we draw some conclusions and establish further directions ofresearch. Appendix A gives an introduction to the methods of robust regression, whichare used at the core of both our estimators.2 Optical FlowThe optic ow is de�ned in [7] as \the apparent motion of brightness patterns" in asequence of images. It is a velocity vector �eld de�ned over sequences of images, assumingthat the pixels in one image displaced by that �eld do not change brightness level. Thede�nition may be given the following mathematical interpretation :3



I(x+ u; y + v; t+ 1) = I(x; y; t) for all x, y, and t (1)where I(:; :; :) is the sequence of images, seen as a function, x and y are pixel coordinates,t is time, and (u; v) 2 is the optic ow.When x and y are real-valued, one easily sees that this de�nition is ill-posed, as theregenerally is no unique vector (u; v) verifying equation (1), but rather, in�nitely manyor none. There are many ways [7] to de�ne a unique vector �eld that veri�es equation(1) : Some involve regularization techniques (smoothness constraints on the ow), othersassume that the ow �ts certain models (e.g. local constancy [1]) and there are still othermethods [10, 11], which make use of higher order image derivatives.2.1 A�ne FlowIn this paper, we assume that the ow is an a�ne (vector valued) function (of the imageplane coordinates) : u(x; y) = u0 + (x� x0)ux + (y � y0)uyv(x; y) = v0 + (x� x0)vx + (y � y0)vy (2)This is an approximation, since in general there is no a�ne vector �eld that veri�esequation (1).The estimators we present in this paper compute the optic ow and its derivatives(with respect to image coordinates) (ux; uy; vx; vy). Together, these values form the \a�neow", de�ned by the following set of parameters :� = [u0; ux; uy; v0; vx; vy]T : (3)2.2 Error ModelingThe optic ow, and its a�ne approximation are not exact models, and a \noise" termhas to be taken into account. Knowing the characteristics of this noise term is important,because they determine the choice of the numerical method used for estimating the ow.We temptatively identi�ed the following sources of error in our model :e1 - Non exactness in equation (1). It can be violated in the presence of occlusion,shading and other optical e�ects.2More rigor would require writing (u(x; y; t); v(x; y; t)).4



e2 - Use of discrete coordinates (x; y), and discrete grey-level values render unplausiblede�nition (1).e3 - Measurement of image value I(x; y) and of derivatives Ix; Iy and It are \noisy".Despite its fundamental aspect, and the great development of �ltering techniques,this noise is poorly characterized.e4 - Non exactness in the a�ne approximation equation (2). It depends on the opticalproperties and dynamics of the scene. This term also lacks a good modeling.Presently, the terms e1; :::; e4 lack a good statistical characterization, and thus many esti-mation methods, that require precise knowledge of the noise may not be used adequately.In the algorithms presented here, we consider the noise terms combined into a uniqueterm, whose characteristics were studied empirically, as described in Section 5.1.1.3 Anisotropic A�ne Flow EstimatorsWe present two novel estimators for the a�ne optical ow, that we denominate asAnisotropic. The methods are based on a directional di�erentiation scheme of theimages along the direction of the current ow estimate. In the following sections we detailthe models and obervations to be used by these estimators.3.1 Discrete Model for the Optical FlowWe used the following equation to de�ne the ow on discrete sequences of images :I(x+ u; y + v; t+ 1) = I(x; y; t) +Noise for all x; y and t: (4)To some extent, this interpretation is similar to that of \region-based matching tech-niques" in two ways. In fact, it involves only image values, and not image derivatives.Secondly, in order to estimate the ow, we will assume that it follows locally a givenmodel (a�ne in our case, but other models could be used, as in [1]). However, the im-plementation of our algorithm is more closely related to that of \di�erential techniques",which rely on the following - well known - interpretation of the de�nition of the optic ow[7]: � It(x; y; t) = Ix(x; y; t)u+ Iy(x; y; t)v+ � for all x; y and t; (5)where Ix, Iy are the spatial derivatives of the image sequence, It is the time-derivative,and � denotes a random noise term. 5



3.2 Observation EquationThe presented estimators compute the a�ne ow by solving a system of \observationequations". In this subsection, we will show how these equations are obtained.We consider the �rst-order approximation of the image3 :I(x+ u; y+ v; t+1) = I(x+ ~u; y+ ~v; t+1)+ [Ix; Iy] [u� ~u; v � ~v]T + h(u� ~u; v� ~v) (6)where h(:) denotes the approximation error of the �rst-order expansion. This equationis valid for arbitrary values of (~u; ~v). A suitable choice of these values will be discussedlater in the paper. Combining the de�nition (4) and the approximation (6), it yields:I(x; y; t) + � = I(x+ ~u; y + ~v; t+ 1) + [Ix; Iy] [u� ~u; v � ~v]T + h(u� ~u; v � ~v) (7)which can be re-written as:I(x; y; t)� I(x+ ~u; y + ~v; t+ 1) � Ix~u� Iy~v + h(u� ~u; v � ~v) + � = Ixu+ Iyv (8)If we (somewhat abusively) assume Ix and Iy to be known, then equation (8) is alinear observation equation, where the only unknown terms are � and h(u � ~u; v � ~v).These terms constitute the random part of the observation model, and will be referred toas noise.Notice that, for the special case where ~u = ~v = 0, our observation equation reduces tothe one used by the so-called \di�erential" techniques (see equation (5)).We now have the possibility of choosing the values of ~u and ~v in order to reducethe variance of the noise term. It can be shown that under some realistic conditions,replacing (~u; ~v) by an estimate (û; v̂) of (u; v) minimizes the variance of the random termh(u� ~u; v � ~v). These assumptions are :a1 - The error in the estimate (û; v̂), the noise terms due to the optic ow model, andimage measurements noise are all independent random variables. Although we havenot veri�ed experimentally these points, it is a plausible hipothesis.a2 - The functions Ejh(:; v)j4 and Ejh(u; :)j have their minimum in 0 and are increasingon [0;+1[ and decreasing on ] �1; 0] (for all v and u). This is justi�ed experi-mentally in Subsection 5.1.2.3In equation (6), Ix(x+ ~u; y + ~v; t+ 1), is abbreviated Ix, and similarly for Iy.4Ejh(u; v)j is the expectancy, taken over images I and pixels (x; y), of jI(x; y)�I(x+u; y+v)�Ixu�Iyvj. 6



a3 - The density of (u; v) is such that the conditional densities of u and v are unimodal(for any value of v and u), with modes û and v̂. This is a convenient assumptionwhich is not provided theoretically. We believe that weaker su�cient conditionsmay exist.It can also be shown that, under the same assumptions, the variance of the randomterm diminishes with that of the estimate of (u; v). The estimate (û; v̂) is provided eitherby:� An intermediate estimate (as explained in Subsection 3.3).� The (possibly scaled) estimate of the ow in the previous frame.� (0; 0) at the beginning of the sequenceThe direction (û; v̂) is \privileged" in some way when this value is given to (~u; ~v), andwe will call that choice the \Anisotropic" approach. On the opposite, using (0; 0) willbe referred to as an \Isotropic" approach.When one assumes that the ow is a�ne, as expressed in equation (2), and rewritingequation (8), it yields:� I(x+ û; y + v̂; t+ 1) + I(x; y; t) + [Ix Iy] " û̂v# = [Ix xIx yIx Iy xIy yIy] ��; (9)This is the observation equation that will be used to solve for the a�ne parameters �.All the terms in the left-hand side may be measured, and constitute the observation. Theterm [ Ix xIx yIx Iy xIy yIy ] may also be computed (since we chose x and y, and assumedthat Ix and Iy were known), and is called the \regression vector".3.3 Solving for the A�ne Flow ParametersSince each observation (of values I(x; y; t), I(x+ ~u; y+ ~v; t+1), Ix(x+ ~u; y+ ~v; t+1) andIy(x+ ~u; y + ~v; t+ 1)) yields one equation in six unknowns, at least six observations areneeded to de�ne � uniquely. In practice, we will use over-constrained systems, with 50to 3000 observations.A common method [8] to solve over-constrained systems of linear equations is robustregression, which we describe in appendix. For now, the important point is that thismethod is iterative. It yields a series of estimates �̂1, �̂2, ..., that eventually converges tothe \correct" value. In our case, the number of iterations is �xed.7



The two algorithms we present di�er in the way of alternating observation-making(computing values for the left-hand side of equation (9)) and iterations of robust re-gression. In the �rst algorithm, called (plain-)Anisotropic, the observations are com-puted, and a classical robust regression follows. In the second method, the observationsare re-computed between the iterations of robust regression. This approach is calledAnisotropic-M (where the \M" stands for \Modi�ed robust regression").The \classical" Isotropic estimator, that will be used for comparison, is similar tothe �rst algorithm, the di�erence residing solely in the choice of (~u; ~v) = (0; 0).The \Anisotropic-M" can be shown to be a \Region-based" matching algorithm. Theseries of estimates (�̂k)k=1::: converge towards a value �̂0 that \robustly" minimizes thesum of the di�erences terms I(x; y; t) � I(x + ~u; y + ~v; t + 1) (for all (x; y) in whichobservations are drawn). Thus �̂0 minimizes a robust distance between one image andthe previous one, after warping by an a�ne transformation. This point is detailed inappendix A.The di�erent estimators, for the same number of observations and of iterations (and allother conditions equal), have di�erent computational costs. The \Isotropic" is the mosteconomical, because of its simplicity, while the \Anisotropic-M", is the costliest. Hence,the computational cost must be taken into account when comparing the performance ofthese various estimators.4 Performance Evaluation of an EstimatorWe have now to discuss the possible ways of asserting the quality of estimators. Thereare two important parts in the performance evaluation process :� One part is entirely described in estimation theory, and proceeds in two steps :{ De�ne an error measure for estimates (Section 4.1).{ Use it in a performance measure for estimators. In practice, this measure isnot always analytically tractable, but we may empirically estimate it from datawith ground-truth. Moreover, we have somewhat extended the performanceevaluation to data without ground-truth (Section 4.2).� The second part is methodological, and reects our considerations about computa-tion cost. It consists in comparing performances only when they were obtained \atthe same cost". This point may seem trivial, but is often overlooked. In order to8



allow performance comparisons, estimators must o�er convenient way of controllingtheir \computational cost". (Section 4.3).4.1 Measure of Error of an EstimateThere are many possible ways to de�ne the error of an a�ne ow estimate. We chose tomeasure the (vectorial) error by the di�erence between the true value and the estimate:�� �̂:Then, we consider a (scalar) error, the squared norm of this vector, given by:k�� �̂k2:One may argue against this quadratic criterion. For example, once an estimate isall the way wrong, the user does not care if it is ten times worse5. Moreover, we knowthat minimizing a quadratic error criterion can lead to numerical problems (e.g. thewell-known numerical instability of least square methods). However, this error criterionfacilitates the analytical study of performance.We must choose a norm on R6.For example, the usual norm de�ned by:k�� �̂k2 �= (û0 � u0)2 + (ûx � ux)2 + (ûy � uy)2 + (v̂0 � v0)2 + (v̂x � vx)2 + (v̂y � vy)2is not satisfactory. An error of e.g. 0:1 would be penalized in the same way if it werecommitted on u0, which is typically in the range of [�3; 3], as if it was committed on ux,which ranges in [�0:1; 0:1].It is customary to use the norm de�ned by the (inverse of the) covariance matrix ofthe quantity one wants to study (which is then seen as a random variable). However, thismatrix is not know a-priori. In that case, it can be approximated by the empirical covari-ance matrix obtained from a population of ow estimates computed on \representative"image sequences.Since we use estimates instead of \true values", the obtained covariance matrix alsodepends on the characteristics of the estimator (that produced the estimates). We sup-posed no knowledge of those characteristics, and assumed that the error commited isnegligible. However, we believe a more rigorous treatment of the question is feasible.Each estimate used for estimating the covariance matrix was produced, not by a singlerun of the estimators, but by the mean of 15 estimates (each produced by a run). We5Whereas the proposed quadratic criterion will penalize hundredfold that tenfold wronger estimate9



used two real-world sequences to estimate the empiric covariance matrix, for a total of 40images, although more images would improve the quality of the estimate. One can seethat the approximation of the norm will improve with the number of images used.The norm matrices obtained by this process are not diagonal. However, if we arguethat in general, the di�erent components (u0; ux; uy; v0; vx; vy) of an estimate have noreason to be correlated, one can neglect the o�-diagonal terms, and use this diagonalmatrix to compute the norm. In what follows, we will always use this norm in R6.4.2 Performance of an estimatorEstimation theory has many criteria to express the quality of an estimator. The �rst andmost natural is bias, which we do not discuss here, since the estimators we consider are(theoretically) unbiased.Then comes covariance, when it is de�ned. An estimate of a covariance matrix maygive insight on the behavior of the estimator. However, we would like a performancecriteria - like a scalar index - which allows the comparison of various estimators. We mayconsider taking the expected norm of the error, as a measure of quality:E = E(k�̂ � �k2) (10)The norm is the one de�ned in Section 4.1. Analytical study of the above expressionhas not given useful results, for the following reasons :� The optic ow problem is not, in general, a classical estimation problem, since thetrue parameter is not available, unless one uses synthetic data.� A covariance matrixmay be calculated analytically as suggested in [5]. However, it isthe covariance matrix of the limiting value limk!1 �̂k. In our case we only perform afew iterations of the robust regression algorithm. Moreover, the expression involvesthe \noise" terms in the observation equation (8), which is poorly characterized.However, when ground-truth data is available (e.g. when synthetically deformed im-ages are used), we may estimate the error criterion de�ned in equation (10) by:Ê = 1Ne X̂� k�̂ � �k2; (11)This estimate is of course greatly dependent on the data used. In our case, we couldobserve that the performance varied depending on the image sequence.10



Transposing this performance measure to the case where no-ground-truth is availableis non-trivial. A natural way consists in replacing � in equation (11) by a highly reliableestimate �� of the \true" parameter:E� = 1Ne X̂� k�̂ � ��k2 (12)The signi�cance of doing this kind of substitution greatly depends on the way �� isobtained. In some cases, it is theoretically very well founded, e.g. estimating the varianceof a distribution of unknown mean. In our case, we must remain cautious, since we cannoteven assume that there exists a \true" a�ne ow.Our choice was to compute o�-line good estimates of the a�ne ow (relying on com-putationally demanding methods), which are then used as ground-truth. Each estimatewas the average of 20 estimates produced by \anisotropic-M" estimators, with 2000 ob-servations. We are currently studying the validity of evaluating performances in this way.We justify empirically our method in [3]. Furthermore, when comparing performance onsequences with known ground-truth, the criteria Ê and E� give compatible results.A more technical approach could involve building con�dence intervals for performancemeasures (for chosen con�dence levels). We are currently working on the application ofstatistical tools to performance estimation.4.3 Computational CostOften, there are time-constraints when using an estimator. For example, in active vision,the existence of a closed loop control frequency imposes a limited time for all the algorithmcomputations. Hence, computational cost is an important issue. We will characterizeestimators in terms of the \accuracy" obtainable (as de�ned in Section 1) for a given unitof computational resource. Unfortunately, we are not aware of analytic results on thatsubject6. In statistics or mathemathics, computational cost of numerical procedures isusually assumed to be zero, and at most, the order of magnitude of the complexity ismentioned7.De�nition of the Computational Cost : The concept of \computational cost" de-serves some attention, as it may have various de�nitions. Specifying the complexity seems6An exception is when, in a regression problem, the noise is Gaussian; otherwise, we may have asymp-totic results, which are less useful; or no result other than experimental evidence.7That is, one determines whether the algorithm has e.g. linear or quadratic or exponential complexity.11



natural, but there are many variants (worst-case, mean). It may depend not only on thealgorithm, but also on the machine running it (it may be parallelizable).The way complexity translates into execution time is non-trivial and is also dependenton the machine. To model this dependency analytically requires �ne knowledge of themachine, as well as (for estimating mean execution time) precise knowledge of the dataow.The \empirical mean cpu-time" (for our machine) was taken as criterion. This ap-proach has the disadvantages of depending on the machine used, on the e�ciency of thecode, and limited control. However, since the di�erent implementations we discuss hereare very similar, we consider that the mean cpu-time is a fair measure to compare them.Setting the Computational Cost : In order to compare implementations at a �xedcost, we must be able to set their cost at a chosen level, and the algorithm must o�er away of doing so.For each estimator, we modeled the computation cost as function of the number ofobservations, and of the other tuning parameters. Thus, for a given setting of tuningparameters (not counting the number of observations), one may choose the number ofobservations to achieve a desired computational cost.Experimentation con�rmed that our model for cost was realistic, and that the com-putational cost was correctly controlled.Measuring the Computational Cost : We estimated the parameters of the modelusing the few available functions under Unix. Since measuring execution time (when it isof the same order of magnitude as the precision of the clock), is not widely described, wemust detail the procedure followed:Time intervals were measured either by� Counting the number of times a function may be called within a prede�ned numberof timer ticks, or� Counting the number of ticks before a prede�ned number of function calls werecompleted,whichever occurred last. This, and a few more precautions, guarantees us a minimum levelof precision in the measure. 12



Although no signi�cant change in the estimated model parameters was observed whenthe load of the machine changed, we believe �ner software tools would be welcome. Also,a better adapted concept of complexity requires further analysis.5 ResultsIn this section we will present the various results obtained. In a �rst step we will focuson the validitation of the models and assumptions made throughout the paper. Then,we will study the performance of the various estimators against several parameters. As aside-result, we will show how this framework can be useful to tune some of the intrinsicparameters of an algorithm.5.1 Validity of AssumptionsThe main assumptions made were the a�ne nature of the optical ow �eld, together withthe characteristics of the error in the a�ne image approximation. These assumptions willbe looked into in the following sections.5.1.1 Validity of the A�ne Flow ModelWe here study the validity of both the optic ow de�nition and of the assumption thatthe optic ow is a�ne. We estimate the distribution of the \Noise" term in equation (4),Noise = I(x+ u; y + v; t+ 1)� I(x; y; t)when the ow is assumed to be a�ne over the whole image, that is, when :u(x; y) = u0 + (x� x0)ux + (y � y0)uyv(x; y) = v0 + (x� x0)vx + (y � y0)vyWe used two real-world sequences of 20 images (the �rst of which are shown in Figure1) to build an histogram of the values of the \Noise" term in equation (4). Additionally,there is an extra \error" term due to the absence of ground-truth data. Obviously, forthis study, synthetic sequences could not be used. We estimated the a�ne ow on thesesequences as follows: Each value is the average of 20 estimates produced by \Anisotropic-M" estimators with 1:0 second of allocated cpu-time (which is a large value).Replacing the unknown ow by the estimates, we could observe the sum of the \Noise"term and of another term due to error in the ow estimate. We took 34000 measures andput them in 500 bins. Since the optic ow (and thus its derivatives) is ill-de�ned, there is13



no ground-truth data. The resulting histogram is shown in Figure 2. By using knowledgeabout the estimator and about image approximations, the above experiment could bere�ned, and the e�ect of the error in the ow estimates could be reduced.
Figure 1: Typical images, used to estimate the noise distribution.
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Figure 2: Histogram of the residues in equation (4), using the a�ne ow approximation,computed from real images. The unknown ow parameters are replaced by a good esti-mate; thus there is an extra error term. The tails are important : The variance is 39.This histogram was produced using 34000 measures and 500 bins.The distribution in Figure 2 is clearly non-Gaussian and, moreover, it is long-tailed.The variance of the displayed data set is 39.The Least Squares method is well known to be ine�cient when the noise is non-Gaussian, and in that case, robust regression is usually preferred. Therefore, our choiceof using robust regression rather than Least Squares appears justi�ed.5.1.2 Image ApproximationsHere, we show that the assumptions made in Subsection 3 on the function h are jus-ti�ed. Recall that we have de�ned h as the error committed when doing a �rst-order14



approximation of the image grey-level values:I(x+ u; y + v; t+ 1) = I(x+ ~u; y + ~v; t+ 1) + [Ix; Iy] [u� ~u; v � ~v]T + h(u� ~u; v � ~v)A di�erent \h" function is thus de�ned for every pixel in the image (and every image),and it is thus more rigorous to call it hI;x;y. We want to show that the expectancy, overimages and pixels, of the absolute value of h,E(jhI;x;y(a; b)j)is an increasing function of jaj (when b is �xed) and of jbj (when a is �xed).We have estimated E(jh(a; b)j) from �ve images, which we consider \representative".On each one, we chose randomly 1000 points, and for each point we computed jhI;x;y(a; b)jfor each value of (a; b) in f�19; ::; 19g�f�19; ::; 19g. From these, we computed an estimateof the expectancy of jhI;x;y(a; b)j (one estimate for each value of (a; b)).Figure 3 shows level contours of an empirical estimate of E(jh(a; b)j). The minimumlevel is in the center, and increases towards the sides. Our assumption is only approx-imately correct because the level contours show that the minima (of the function thatassociates Eempirical(jh(a; b)j) to a (resp. b), for a �xed b (resp. a)), are not exactly on thea = 0 and b = 0 axes, but rather, slightly shifted. We believe this is due to asymmetry inthe images used, and that this feature would disappear if more images are used.5.2 Factors inuencing the performanceNow, we can study how di�erent factors inuence the performance of the three consideredestimators (\Isotropic", \Anisotropic", and \Anisotropic-M"). All the �gures below showthe empirical mean error norm plotted against an inuencing factor. Whenever syntheticow was used, its value was obtained either by :� A random process : At each time instant t, ut0 is taken as: ut0 = b � ut�10 + �t, where�t is a sequence of independent Gaussian random values, and b 2 [0:0; 0:8] (ut0 is a�rst order auto-regressive process ( AR(1) ). A similar procedure was adopted forthe remaining parameters ux; uy; v0; vx; vy.� Simulating the ow produced by a camera moving while watching a at surface.The ow is then a second order polynomial in the image coordinates. The expectedvalue of the estimators is the �rst-order part of the polynomial, which is used asground-truth. 15
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Figure 3: Contour levels of the empirical expectancy of the error committed when doing�rst-order approximation of images. The minimum is at the center, and the level increasestowards the sides. This �gure shows that our hypothesis is approximately valid.We also specify wether each �gure plots the performance obtained from a single se-quence, or a result of averaging the estimates from many sequences.5.2.1 Performance as a function of costFigure 4 shows that the empirical expected error norm decreases when the computationalcost (expressed in seconds) is increased. This justi�es comparing estimators that aregiven the same computational resource. This �gure was obtained from one sequenceof images, with synthetically generated optic ow. This graph is similar to that of errorversus number of observations, since the cost is proportional to the number of observationsmade.In theory, the error of robust regression is known to tend asymptotically to 1=No,where No denotes the number of observations. The estimators tested have displayed asimilar behavior.5.2.2 Performance as a function of a time-smoothing parameterThe good functioning of many vision algorithms is dependent on the correct setting ofsome tuning parameters. However, one often has little insight about what a \good value"might be. A partial solution to the problem is to plot the performance as a function of16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2

3

4

5

6

7

8

9

10
 Seq:"outdoors" (real)   Mean Flow Norm=

 performance versus COST


er
ro

rFigure 4: Empirical squared error of the estimator vs. computation cost, for\Isotropic"(plain curve), \Anisotropic"(+) and \Anisotropic-M"(o) methods (All otherconditions are equal).each given parameter. We illustrate here how this can be done.Figure 5 plots the mean error norm as a function of a \time-smoothing coe�cient".The images are time-smoothed by the following In�nite Impulse Response (IIR) �lteringscheme : I(t) = aI(t� 1) + (1� a)I0(t) ;where I(t) denotes the smoothed image, I0(t) is the original image (position indexes areomitted). We call a, the \time-smoothing coe�cient".The di�erences between Figure 5-(a) (from a synthetic sequence) , and Figure 5-(b)(real-world sequence) illustrate the di�erences between using synthetic and real-worlddata.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

100

200

300

400

500

600

700
 Seq:"soutdoors5" (synth)   Mean Flow Norm=805.6

 performance versus TSC, fixed cost


er
ro

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45
 Seq:"outdoors" (real)   Mean Flow Norm=

 performance versus TSC, fixed cost


er
ro

r(a) Synthetic data (b) Real-world dataFigure 5: Empirical squared error of the estimator vs. time-smoothing coe�cient, for\Isotropic"(plain curve), \Anisotropic"(+) and \Anisotropic-M"(o) methods.17



All performance measures presented in Subsection 5.2 are done with a time-smoothingcoe�cient of 0:35; we set the other tuning parameters (e.g. spatial �lter width, variousrobust regression parameters, etc) to \good" values by the same kind of investigation.5.2.3 Performance as a function of the number of iterationsSome parameters in the implementation have an e�ect on both its performance, and itscost. Such parameters include the width of the image smoothing �lters (when FiniteImpulse Response �lters are used), the number of observations used (which is used toset the computation cost), or the number of iterations of the robust regression. Here, westudy the choice of this last parameter.An important part of the computational cost of the ow estimator comes from therobust regression algorithm. The cost of regression is proportional to both the number ofiterations and the number of observations. Thus, if one increases the number of iterations(which should increase the performance) and wishes the cost to remain constant, one mustdiminish the number of observations (which should decrease the performance). Choosingthe number of iterations, in order to maximize the performance is tricky, since we haveno theoretical result to help us.Figure 6 plots the empirical expectancy of the squared error of the three familiesof estimators, \Isotropic" (solid line), \Anisotropic" (+) and \Anisotropic-M" (o). Thenumber of iterations of the estimator is in abscissa (not counting the initial estimate :0 corresponds to the (initial) least-squares solution, 1 indicates that the robust estima-tor has been iterated once, etc). The performance is the average of performances frommultile sequences, when the ow takes random values (AR(1), with null auto-regressioncoe�cient).Figure 6 shows the e�ectiveness of the \Anisotropic-M" approach, on both synthetic(Figure 6 (a)) and real-world data (Figure 6 (b)) The at curves of the \Anisotropic" and\Isotropic" seem to indicate that for a given computation cost, the performance of thesemethods does not vary with extra iterations.The result greatly depends on the used sequences. However, the general tendency isthat of the above data, except that the performance of the (simple) \Anisotropic" methodis usually better than here. 18
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r(a) Synthetic data (b) Real-world dataFigure 6: Empirical squared error of the estimator vs. number of iterations, for\Isotropic"(plain curve), \Anisotropic"(+) and \Anisotropic-M"(o) methods.5.2.4 Is Robust Regression Adapted ?It is well known that perfectly good numerical methods may misbehave when run inconditions they were not meant for. On some sequences of images, we noticed thatow estimators behaved in an unexpected way. In the following experience, we compareestimators that di�er only in the number of robust iterations. The number of observationsis held �xed and the cost is therefore variable. One sequence was used, with large owvalues (generated by simulated 3D motion of plausible amplitude).One would expect the empirical error to decrease with the number of iterations. Figure7 shows that the \Anisotropic-M" behaves according to this idea. However, the \Isotropic"and (simple)\Anisotropic" methods display constant error levels. One may ask if the\Anisotropic-M" method behaves \well" because of the iterations of the robust regressionalgorithm, or because of the successive amelioration of observations, that in turn allowbetter estimates.The choice of robust regression was justi�ed by the assumption that the image deriva-tives Ix and Iy were known exactly. This abusive assumption alone could explain theprevious observations. To overcome this limitation, we could use a model for the obser-vation of Ix, Iy and I, and perform maximum likelihood estimation.Notice however that, in spite of these aspects, we consider the results obtained withthe \Anisotropic-M" approach very encouraging.19
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rFigure 7: Empirical squared error of the estimator vs. number of iterations, for\Isotropic"(plain curve), \Anisotropic"(+) and \Anisotropic-M"(o) methods (All otherconditions are equal). Number of observations is constant.6 ConclusionsMany of the existing methods in compuer vision lack good characterization and perfor-mance evaluation. This lack is preventing the use of computer vision techniques in manyindistrial problems. Furthermore, characterizing the performance of the various methodsis the only way of providing a fair comparison and analysis between various algorithms.In this paper, we address the problem of characterizing the performance of opticalow estimators, even though the framework can be extended to other problems. We usethe estimation theory framework to de�ne performance measures for various algorithms.First we consider the case where ground turth data is available. The methodology is thenextended to deal with the absence of ground-truth data, which is most often the case, incomputer vision. Another distinctive aspect is that we consider the cost of an estimatorwithin the performance evaluation framework.We present two novel algorithms - Anisotropic - to estimate the a�ne optical ow.These algorithms are then compared with a classic estimator, using the developed frame-work. The work described here is grounded in two main ideas:Good characterization of the input : We have identi�ed (roughly) the nature of theerror in our model and made hypotheses concerning properties of the input images. Then,we veri�ed these hypotheses and used them to justify our algorithm. The resulting algo-rithm compared favorably with the classical - simpler - approach.Good characterization of the output : Special care must be taken when estimating theperformance of the estimators. Since we cannot do so analytically, we proceed empirically.20



An important point is that we compare performance measures \fairly", in the sense thatthe computational cost is also considered. We believe the simple tools we used can andshould be complemented in future work. We are currently working in that direction, alsohoping to automatize the optimization of algorithms.We hope these two points will eventually \connect" in the sense that one will be,in the future, able to characterize the expected quality of the output from that of theinput. Being able to assemble many vision sub-systems into a greater system of knowncharacteristics will undoubtfully mark a big improvement in computer vision.A Reminder about robust regressionRobust regression may be used to estimate an unknown (vectorial, of dimension p) pa-rameter �, when one has the following observation model:Y = X� + �where �i is \noise", Y is an observation (i.e. a scalar measurement), and X is a known(line) vector describing the way the observation was taken. Drawing n observations yieldsn observation equations Yi = Xi�+ �i i = 1; ::; n:When n is equal to p, and the matrix X formed by the lines (Xi)i=1::n is invertible,we may estimate � by X�1Y ; This solution is easily seen to be highly sensitive to noise,and it is preferable to use extra observations (i.e. n > p).Robust Regression Solution When an over-constrained system is considered, wemust de�ne the solution �̂ that we will compute. Usually, it will be an unbiased estimateof �.Most often, knowledge about the nature of the noise term � can be used. For example,when it is assumed to be Gaussian and (all terms are) independent, and variance is thesame for all �i, the maximum likelihood solution is the least squares solution:�̂ = (XTX)�1XTYthat minimizes Xi=1::n(Yi �Xi�)2 ;21



this last expression being the log-likelihood of the unknown parameter taking the value� when the observations are (Yi;Xi)i. Di�erent assumptions on the nature of the noiseyield di�erent expressions for the log-likelihood.However, knowledge about the noise term is often not available. Making wrong as-sumptions about it may cause unsatisfactory behavior of some maximum likelihood esti-mators. The goal of robust estimation is to yield satisfactory estimators, even when thenoise term in imprecisely known.A \robust solution" is de�ned as a minimum ofXi=1::n �(Yi �Xi�� ) ;for some function �, (usually) convex, having a unique minimum in 0; or equivalently, asa zero of Xi  (Yi �Xi:�̂� )Xi = 0 2 Rn ;where �0 =  . � is a \scale" factor, a \robust" equivalent to a standard deviation.This is an implicit de�nition of the solution �̂. Huber [8] suggests computing �̂ bythe following iterations :�̂k+1 = �̂k + (XTW kX)�1XTW k(Y �X:�̂k)where W is diagonal, and W ki;i =  (Yi �Xi:�k� ) �Yi �Xi:�kare the successive weighs given to the observations. The value of � can also be computediteratively [8]. Notice that when �(x) = x2=2, we obtain the least squares solution in justone iteration.For  , we have used either  (x) = x if jxj < 1= jxj=x otherwise,yielding a so-called \Huber-estimator", or (x) = 2x�(x2 + 1)with approximately equivalent results. Assympotically, the \Huber" robust estimator canbe shown [8] to tend to a normal distribution, where the mean is the true value.22
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