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Abstract

Computing the nullspace of a matrix is a common operation in many

�elds of science and engineering. As it is done, this is a non-continuous

operation. There exist situations in which it is desirable to de�ne a func-

tion that computes the nullspace in a di�erentiable manner. The method

that we propose is in many respects a di�erentiable analogue of the non-

continuous nullspace computation that is commonly implemented in nu-

merical software packages and will be written n () in this article.

Given a di�erentiable real matrix-valued function B(Θ) whose rank is

locally constant, we de�ne locally a di�erentiable matrix-valued function

U (Θ) whose columns form an orthonormal basis of the nullspace of B (Θ).
A closed-form expressions are given to compute U (Θ) and its partial

derivatives from B (Θ), its partial derivatives and n (B (Θ)).
We illustrate the utility of the method by showing how to use it to solve

a class of constrained optimization problems using general unconstrained

optimization tools.

Keywords : Matrix di�erential calculus, Implicit function theorem, Di�erential
of singular values, Repeated singular values.

1 Introduction

The nullspace of a matrix is commonly used in algorithms for the most varied
purposes. Its computation, as provided by major numerical software packages
[17, 30, 2, 10], is a non-continuous operation. In many situations, it would be
convenient if it were continuous and di�erentiable.

For example, when optimizing a cost function, e�cient optimization algo-
rithms require the computation of derivatives of the cost. Thus, if a nullspace is
computed as part of the evaluation of the cost function, it would be good that
this operation be di�erentiable.

Also, the sensitivity of algorithms is often estimated by propagating an error
from its input to its output. For this purpose, it is necessary to know the
di�erentials of the output with respect to its input at each step of the algorithm.
Again, if the nullspace is involved at some point, its di�erential is needed.

1



In this article, we show how to compute a di�erentiable real matrix-valued
function whose columns form an orthonormal basis of the nullspace of a matrix-
valued function. The computation of this �nullspace� function and of its di�er-
ential only requires tools commonly found in linear algebra software, such as
the non-continuous computation of the nullspace of a matrix.

Scope of this article

Before going more in detail, we discuss the scope of this article, by de�ning the
conditions under which the proposed method can be applied. The main issue
treated here, and the method for resolving it, arises from the following question :

If one is given a real, possibly di�erentiable matrix-valued func-
tion B (θ), under what conditions can a matrix-valued di�erentiable
function U (θ) be de�ned such that the columns of U (θ) form an
orthonormal basis of Null (B (θ))?

One �rst condition is that the rank of B (Θ) be constant � at least locally.
Otherwise, the size of U (Θ) cannot be �xed and its continuity is hard to de�ne.

The requirement of locally constant rank is ful�lled e.g. if B (Θ) is an an-
alytic function [14] : in that case, the rank of B (Θ) is the greatest size of a
minor whose determinant is not identically zero. Since such a determinant is
itself analytic, its zeros are isolated and, for any point Θ in which the rank of
B (Θ) is maximal, there is a neighborhood of Θ on which the rank of B (Θ) is
constant.

For more general functions, the rank is not necessarily locally constant, as
shown by the following 1 × 2 matrix-valued function, de�ned on R.

B (θ) =
[

0 θ2 sin (1/θ)
]
if θ 6= 0 andB (0) =

[
0 0

]
.

In the neighborhood of θ = 0, the rank of B (θ) is not constant, since it is zero
if θ ∈ {1/kπ | k ∈ Z} and one otherwise.

One must thus assume that, on the domain on which U (Θ) is de�ned, the
rank of B (θ) is constant; equivalently, U (Θ) can only be de�ned in a set on
which the rank of B (θ) is constant.

The second important remark is that U (θ) is not unique when it has more
than two columns, since right-multiplication by a non-identical unitary matrix
yields a distinct function whose columns also form an orthonormal basis of the
nullspace of B (θ).

Fixing the value of B (θ) in a point is not su�cient to remove this ambiguity,
as shown in this example : consider the 1 × 3 matrix-valued function B(θ) =
[cos (θ) sin (θ) 0] de�ned on R, and take θ0 = 0. De�ne :

U1 (θ) =
[

− sin (θ) cos (θ) 0
0 0 1

]>

and U2 (θ) = U1 (θ)
[

cos (θ) − sin (θ)
sin (θ) cos (θ)

]
,

so that both functions are di�erentiable and �are� orthonormal bases of the
nullspace of B (θ). These two function only coincide on the set {2kπ|k ∈ Z}.
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In order to de�ne a unique function U (Θ), another normalizing condition

should be chosen, beyond U (Θ)> U (Θ) = I and �xing the value of U (Θ0) for
some point Θ0. In the present work, we take the normalizing condition that
U (θ) minimizes, amongst all matrices whose columns form orthonormal bases
of B (Θ), the Frobenius norm ‖U (θ) − U (Θ0)‖F .

Result

Having settled the issues of local rank constancy and choice of normalizing
conditions, our main result is stated as :

Theorem 1 If one is given a di�erentiable function B (Θ) de�ned on an open
set D ∈ RM , whose images are N × P real matrices, and for all Θ ∈ D,
the nullspace of B (Θ) has some �xed dimension Q, and one is given a
point Θ0 ∈ D and a matrix U0 whose columns form an orthonormal basis
of Null (B (Θ0)),

then there exists a neighbourhood F of Θ0 and a P × Q real matrix-valued
di�erentiable function U (Θ) de�ned on F such that, for all Θ ∈ F , one
has :

B (Θ)U (Θ) = ON×Q, (1)

U (Θ)> U (Θ) = IQ and (2)

U (Θ) = arg min
U

{‖U0 − U‖F |U veri�es (2, 3)} . (3)

The function U (Θ) is called the nullspace function of (the function) B (Θ).
It is computed using :

U (Θ) = n (B (Θ))UV>, (4)

where n (B (Θ)) can be any matrix whose columns form an orthonormal
basis of Null (B (Θ0)) and U , V are given by the SVD decomposition of

n (B (Θ))> U0 : n (B (Θ))> U0
SVD= UDV>. The di�erential of U (Θ) is

∂

∂Θi
U︸ ︷︷ ︸

U ′
i

= −B+ ∂

∂Θi
B︸ ︷︷ ︸

B′
i

U + UC (5)

where B+ is the pseudo-inverse of B and C is the Q×Q skew-symmetric
matrix de�ned by :

vecl (C) =
(
W>

Q

(
IQ ⊗

(
U>U0

))
WQ

)−1

vecl
(
−U>

0 B+B′
iU + U>B′>

i B+>U0

)
,

(6)

where vecl (C) is the vector of subdiagonal elements of C and W+
Q is the

(Q (Q − 1) /2)×Q2 matrix that selects the sub-diagonal elements (WQ is

3



de�ned in Section 2.1). At U = U0, one has C = 0, so that (5) simpli�es
to :

U ′
i (Θ0) = −B+B′

iU.

The domain on which U (Θ) is de�ned extends as far as the minimum in (3)

is unique, which is the case i� n (B (Θ))> U0 has full rank. On this domain, the
derivatives U ′

i are also de�ned by (5) and (6).
One should note that the computation of U (Θ) and its di�erential only re-

quires a matrix n (B (Θ)) whose columns form an orthonormal basis ofNull (B (Θ)),
a matrix inverse and pseudo-inverse, and a singular value decomposition. All
these operations are available in the most common linear algebra software pack-
ages.

To our knowledge, the present article is the �rst to propose a method to
compute a di�erentiable function that veri�es (1-2). This is not to say that this
is an entirely new result and will see in the next section how it relates with
previous work.

Related work

One �rst di�erence with respect to previous work, with the exception of [22], is
that we consider rectangular matrices instead of square matrices -or operators.
In theory, this di�erence is not relevant, since the nullspace of a rectangular
matrix B (Θ) coincides with that of the square matrix A (Θ) = B> (Θ)B (Θ).
However, it may be inconvenient to compute this product, so that this di�erence
can have some practical implications.

The work closest to ours is certainly that of Haviv and Avrachenkov [11]
on the perturbation of the nullspace of an analytically perturbed square matrix
A (ε) = A0 + εA1 + ε2A2 + ... . While we assume the rank of B (Θ) is constant,
the distinction is made in [11] between rank-preserving and non-rank-preserving
perturbations and both situations are studied. In the former case, a matrix
V (ε) = V0 + εV1 + ε2V2 + ... is de�ned whose columns form a basis of the
nullspace of A (ε). The matrix V (ε) is thus de�ned by an in�nite sum, whereas
we propose a closed-form expression. Another important di�erence with our
work is that, for ε 6= 0, V (ε) is not orthonormal and veri�es V (ε)> V0 = I
instead of (2) which is veri�ed by our function U (Θ) and by the function n (Θ)
commonly found in numerical software packages.

In terms of methodology Haviv and Avrachenkov cite [6] and [5, Theorem
S6.1] to ensure the existence of analytic vector-valued functions that form a basis
of the nullspace of an analytic matrix-valued function; in our case the implicit
function theorem is used to prove that U (Θ) exists and is di�erentiable.

Looking at less closely related work, the study of the nullspace of a matrix
is linked to that of the perturbation of eigenvalues and eigenvectors, which
is studied e.g. by Kato [14, I.2], in the case of analytic functions, and by
Lancaster [15]1 who uses the implicit function theorem. The important issue

1Earlier references exist, such as Vishik and Lyusternik [28] Kato [13], Grauert [9], Rel-
lich [25] or Jacobi [12] and many more cited by Kato [14], to which we did not have access.
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of the bifurcation of repeated eigenvalues that is present in these works is not
relevent in the present article, since we assume that the rank of B (Θ) remains
constant.

Computation procedures for the derivatives of eigenvalues and eigenvectors
have been proposed in many areas of applied research, such as the study of
mechanical systems in aeronautics [27, 19], acoustics [4], econometrics [16] or
computer vision [22]2. The procedures for isolated eigenvalues di�er on such
points as whether any eigenvalue derivative is be computed or only that of the
greatest eigenvalue; whether the matrix is symmetric or general; real or complex;
whether left and right eigenvectors are used and whether second derivatives can
be computed. In the case of repeated eigenvalues, di�erent procedures have
been devised for the cases of di�ering eigenvalue derivatives [20, 21, 18], equal
eigenvalue derivatives but di�ering second derivatives [4] etc. In all these cases,
the derivative is computed at a given point, but no mean is given to de�ne
and compute the eigenvalues, eigenvectors and their derivatives in neighboring
points.

Having discussed the di�erences of our work with the most closely related
studies, Sections 2-4 give the proof of Theorem 1. Then, Section 5 shows how it
can be used to solve a class of problems of constrained optimization and some
concluding remarks are given in Section 6.

2 Existence and di�erentiability

We will rephrase (1-3) as a system of equations h (θ, U) = O, so that the im-
plicit function theorem may be applied. We start (Section 2.1) by �nding a
set of non-redundant equations that is equivalent to (1-3). Then, existence and
di�erentiability of U (Θ) is proved, �rst in a special case (Section 2.1), followed
by the general case (Section 2.3). Finally, the computation of U (Θ) and its
di�erential is treated in Sections 3 and 4.

2.1 Characterization

We now review the de�nition of U (Θ) with the aim of obtaining an equivalent
set of independent equations.

The system of NQ equations (in U) B (θ) U = ON×Q has rank LQ, so that,
unless L = N , these equations are redundant. For convenience, it is assumed
until Section 2.3 that N = L.

Since U>U−I is symmetric, (2) is redundant. A non-redundant formulation
of this equation is obtained by eliminating the supra-diagonal elements, which
yields :

D>
Qvec

(
U>U − IQ

)
= O(Q(Q+1)/2)×1,

where DQ is the Q2 × Q (Q + 1) /2 duplication matrix [8].

2Again, older references [3, 26, 23] exist that were not available to us.
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Moreover, it is shown in Appendix A that a matrix U , verifying (1) and (2),
minimises ‖U0 − U‖F if and only if U>

0 U is symmetric, which is equivalently
stated as : U>

0 U − U>U0 = OQ×Q. Because the left-hand side of this equation
is skew-symmetric, there are only Q (Q − 1) /2 distinct equations :

W+
Q vec

(
U>

0 U − U>U0

)
= O(Q(Q−1)/2)×1, (7)

where W+
Q is the (Q (Q − 1) /2) × Q2 matrix that selects the sub-diagonal ele-

ments : if Ais a Q × Q skew-symmetric matrix, then one has :

vec (A) = WQvecl (A) , vecl (A) = W+
Q vec (A) and W+

Q =
1
2
W>

Q ,

where vecl (A) = [A2,1, ..., AQ,1, A3,2, ..., AQ,Q−1]
>
is the vector of sub-diagonal

elements of A.
Returning to the characterization of U (Θ), (1-3) are equivalent to the system

of equations :

h(θ, U) =

 vec (B (θ)U)
D>

Qvec
(
U>U − IQ

)
W>

Q vec
(
U>

0 U − U>U0

)
 = OQP×1. (8)

The three components in (8) have length NP , Q(Q + 1)/2 and Q(Q − 1)/2
respectively, which sum up to QP . It is clear that h (θ, U) is di�erentiable in
both θ and U .

2.2 Existence and di�erentiability

In order to apply the implicit function theorem, one must show that ∂
∂U

h is
bijective. Using Appendix B and a little algebra, this di�erential takes the form
of the PQ × PQ matrix :

∂

∂U
h (θ, U) =

 IQ ⊗ B (θ)
2D>

Q

(
IQ ⊗ U>)

2W>
Q

(
IQ ⊗ U>

0

)
 (9)

The invertibility of ∂
∂U

h is shown in Appendix C, so that the implicit func-
tion theorem can be applied and guarantees the existence of a neighbourhood
F of θ0 and of a di�erentiable function U (θ) de�ned on F , such that for all
θ ∈ F , one has h (θ, U (θ)) = O. The di�erential of U (θ) is :

∂

∂θ
U(θ) = − ∂

∂U
h (θ, U)−1 ∂

∂θ
h (θ, U) , (10)

and the di�erential of h with respect to θ is :

∂

∂θ
h (θ, U) =

[
KN,Q

(
IN ⊗ U>)

KN,P

OQ2×NP

]
∂

∂θ
B (θ) , (11)

where KN,Q is the commutation matrix [16, 8] such that for all N × Q matrix
A, KN,Qvec (A) = vec

(
A>)

.
We have just proven theorem 1 in the special case rank (B (θ)) = N and we

now extend it to the case N ≥ rank (B (θ)) = L.
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2.3 Generalisation to rank-de�cient B (θ)

We now assume that N ≥ rank (B (θ)) = L and show that there exists a function
U (θ) de�ned as in Theorem 1.

If there exists a di�erentiable function B̃ (θ) ∈ RL×P such that

Span
(
B̃ (θ)>

)
= Span

(
B (θ)>

)
for all θ (and thus B̃ (θ) has rank L), then B (θ) and B̃ (θ) would have same
null space for all θ. As a consequence, their nullspace functions U (θ) and Ũ (θ),
if they exist, would be equal.

All that is needed is to prove the existence of a function B̃ (θ) ∈ RL×P . We
�rst de�ne B̃ (θ) locally, e.g. in a neighbourhood of any θ1 ∈ D . Since there
exists a subset of L independent rows of B (θ1), there exists a L × N matrix of
zeros and ones -S1- that selects these rows, so that B̃1 (θ1) = S1B (θ1) has L
rows and rank L. Moreover, there exists an open neighbourhood of θ1 on which
its rank does not vary. Then, D can be covered by such overlapping neighbour-
hoods, so that a L × P function B̃ (θ) is de�ned. Note also that only �nitely
many neighbourhoods are needed, since there are �nitely many selection ma-
trices. Although B̃ (θ) is not continuous, it is di�erentiable almost everywhere
(everywhere except when �switching� neighbourhoods) and its nullspace varies
in a �continuous� fashion. As a consequence, the nullspace function U (θ) can
be de�ned everywhere and it is di�erentiable.

This function B̃ (θ) is needed only for the purpose of the demonstration and
is not used in the actual computation of U (Θ) and its di�erential, which we
address in the following sections.

3 Computing U (θ)

In practice, U (θ) is easily computed from any matrix n (B (Θ)) whose columns
form an orthonormal basis of Null (B (θ)). Once a possible matrix n (B (Θ)) is
known, for example given by the singular value decomposition [7] of B (θ), one
uses the well-known [7, p. 601] fact that the unitary matrix U (θ) with same
span as n (B (Θ)) that minimises ‖U (θ) − U0‖F is :

U (θ) = n (B (Θ))UV>, (4)

where U , V are given by the SVD decomposition of n (B (Θ))> U0 : n (B (Θ))> U0
SVD=

UDV>. Note that this expression is valid even if rank (B (θ)) < N .

4 Computing ∂
∂θU (θ)

Equation (10) provides a straightforward way of computing the di�erential of
U , but this computation can be done at a lower computational cost and without
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requiring that B (θ) have rank N . This is done, like in [16, 22], by using neces-
sary conditions on the partial derivatives of U (θ) that completely characterise
these partial derivatives.

For convenience, we will write the partial derivative of B (θ) with respect to

the ith component of θ :

B′
i =

∂

∂θi
B (θ) , and similarly U ′

i =
∂

∂θi
U (θ) .

Computing the derivative of (1) with respect to θi, one gets :

B′
iU + BU ′

i = ON×Q,

which in turn implies that :

U ′
i = −B+B′

iU + UC (5)

where B+ is the pseudo-inverse of B and C is a Q×Q matrix that is computed
below. Then, the derivative of (2) with respect to θi yields :

U ′
i
>

U + U>U ′
i = O. (12)

Replacing (5) into (12) implies that C = −C>, that is, that C is skew-symmetric.
Finally, the derivative of (7) with respect to θi is :

U>
0 U ′

i − U ′>
i U0 = OQ×Q .

Using (5) in this last expression yields the following equation in C :

X + Y >C − C>Y = OQ×Q ,

where X = −U>
0 B+B′

iU +U>B′>
i B+>U0 and Y = U>

0 U. A little algebra shows
that the skew-symmetric C that solves this equation is de�ned by :

vecl (C) =
(
W>

Q

(
IQ ⊗ Y >)

WQ

)−1
vecl (X) . (6)

Where vecl (C) is the vector of subdiagonal elements of C. Finally, note
that, when U = U0, this equation reduces to C = O, so that, at U = U0, it
takes the simple form :

U ′
i = −B+B′

iU. (13)

Two remarks are in order : �rst, that (6) is de�ned as long as Y = U>
0 U is

invertible, which is the same condition that is required for U ′
i to be de�ned by

the implicit functions theorem (end remark of Annex C).
The second remark is that U ′

i (Θ0) veri�es U>
0 U ′

i (Θ0) = O, which is the nor-
malizing equation used by Haviv and Avrachenkov [11] to de�ne the derivative.
Thus, at the origin Θ0, both normalizing conditions yield the same derivative.

Finally, it is of practical importance to note that, just like in the previous
section, the equations used to compute the di�erential of U (Θ) do not require
that B (Θ) be full rank.

This concludes our proof of Theorem 1 and we may give an example of its
applications.
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5 Application to constrained optimization

We consider the problem of constrained optimization with respect to variables
Θ ∈ D ⊂ RM and Φ ∈ RP :

minimize S (Θ,Φ) with B (Θ)Φ = ON×1.

While there exist many methods of constrained optimization [1], methods of
unconstrained optimization are easier to implement [24] and are more commonly
found in software packages. It is thus useful to transform the above problem into
an equivalent problem of unconstrained optimization which can then be solved
with standard tools. We now show how this can be done by parameterizing the
feasible set of the original problem.

The feasible set of the original problem,{
(Θ, Φ) | Θ ∈ D ⊂ RM , Φ ∈ RP , B (Θ)Φ = ON×1

}
,

is, at least locally, covered by :{
(Θ, U (Θ)Ψ) | Θ ∈ F , Ψ ∈ RQ

}
.

The original optimization problem is thus transformed into the smaller uncon-
strained problem :

minimizeS (Θ, U (Θ)Ψ) over F × RQ.

Since the cost function is a di�erentiable function of Θ and Ψ, e�cient
algorithms that use the cost derivatives can be used.

One should note that U (Θ) is not necessarily de�ned on the whole domain
D, so that, if the optimal value Θ̂ does not belong to F , it may be necessary
to use many ovrerlapping local mappings. It is easy to pass from one mapping
U1 (Θ), centered in Θ1

0, to another mapping U2 (Θ), centered in Θ2
0, because one

may �x the value of U2
(
Θ2

1

)
to U2

(
Θ2

1

)
= U1

(
Θ2

1

)
, so that the two mappings

coincide in Θ2
0.

The origin Θ0 of the mapping may be changed at each iteration of the
optimization algorithm, or whenever the angle between the nullspace of B (Θ)
and U0 becomes smaller than a threshold.

The method we have just presented thus allows to transform a constrained
optimization problem into a smaller one of unconstrained optimization which
can be solved using well-known algorithms.

6 Conclusion

By using the implicit function theorem, it has been possible to provide a largely
self-contained proof of Theorem 1, and its usefullness is shown by applying it
to a class of problems of constrained optimization.
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Many directions of expansion of the proposed result exist : the complex case
is certainly of interest; also, one may want to study in the same manner the
evolution of the linear subspace associated to non-zero repeated singular values,
which can be expected to be very similar to that of the nullspace.

To summarize this article, We have shown how to de�ne a di�erentiable
matrix-valued function U (Θ) whose columns form an orthonormal basis of the
nullspace of a real, possibly rectangular, matrix-valued function B (Θ) of con-
stant rank. Since, contrarily to previous work, we use the normalizing condi-
tion U (Θ)> U (Θ) = I, this function is a di�erentiable analogue of the non-
continuous function found in many software packages, where it is often called
null().

A Condition on the minimising U

It is well-known [7, p. 601] that, given M × N matrices U0 and n (B (Θ)), the
orthogonal matrix R minimises ‖U0 − n (B (Θ)) R‖F is R∗ = VU>, where U and

V are given by the singular value decomposition of U>
0 n (B (Θ)) SVD= UDV>.

Moreover, one sees that U>
0 n (B (Θ))R∗ is symmetric, simply by computing

U>
0 n (B (Θ)) R∗ − R∗>n (B (Θ))> U0 and verifying that it is zero.

B Di�erentials of f (u,v) = vec
(
F>G

)
Let u ∈ RPM , v ∈ RPN be vectors, F = [u1 . . .uM ] = matP,M (u) and G =
[v1 . . .vN ] = matP,N (v) be P × M and P × N matrices such that vec (F ) = u
and vec (G) = v. De�ne f (u,v) = vec

(
F>G

)
∈ RMN . The di�erential of

f (u,v) are given by :

Because f (u,v) =



u>
1 v1

...
u>

Mv1

...
u>

MvN

 =
(
IN ⊗ F>)

v, one has
∂

∂v
f (u,v) =

(
IN × F>)

.

Likewise,

f (u,v) = KM,N

(
IM ⊗ G>)

u, so that
∂

∂u
f (u,v) = KM,N

(
IM ⊗ G>)

.

Finally, if one de�nes g (u) = f (u,u), one has ∂
∂ug (u) = (IM2 + KM,N )

(
IM ⊗ F>)

.

C Invertibility of ∂
∂U h

The invertibility of ∂
∂U

h(θ, U) is now shown by showing that any vector w> =
vec (W ) ∈ RPQ such that :
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 IQ ⊗ B (θ)
D>

Q

(
IQ ⊗ U>)

W>
Q

(
IQ ⊗ U>

0

)
w = OPQ×1.

is necessarily zero. This is done by considering successively the three blocks in
this equation.

1. The equation (IQ ⊗ B (θ))w = ONQ×1 is equivalent to B (θ)W = ON×Q,
which, by de�nition of U , implies that :

W = UV, (14)

for some nonzero Q × Q matrix V .

2. Then, D>
Q

(
IQ ⊗ U>)

w = O holds i� U>W is skew-symmetric, i.e., (be-

cause of (14)) i� U>UV = V is skew-symmetric.

3. Finally, W>
Q

(
IQ ⊗ U>

0

)
w = O holds i� U>

0 W = U>
0 UV is symmetric, i.e.

if U>
0 UV − V >U>U0 = O. Since V is skew-symmetric, one has :

U>
0 UV + V U>U0 =

((
U>

0 U
)
⊕

(
U>

0 U
))
vec (V ) = OQ×Q,

where ⊕ denotes is the Kronecker sum [8].

Since the eigenvalues of
(
U>

0 U
)
⊕

(
U>

0 U
)
are the sums of pairs of eigenvalues of

U>
0 U [8, Ch. 2.4], all that is missing, in order to show that ∂

∂U
h is invertible,

is to show that
(
U>

0 U
)
is not singular.

Let's assume that there exists a nonzero v ∈ RQ such that U>
0 Uv = OQ×1, so

thatNull
(
U>

0

)
∩Span (U) 6= {OP×1}, or, equivalently, Span

(
B>

0

)
∩Null (B) 6=

{OP×1}., which is also equivalent to saying that there exists a nonzero x ∈ RN

such that BB>
0 x = ON×1 (remember that B>

0 , being full-rank, has rank N).
Now, B (θ) B>

0 is a continuous function of θ, and, in θ = θ0, B (θ0) B>
0 =

B0B
>
0 has only positive eigenvalues (because B0 is full-rank). The eigenvalues

of smallest eigenvalue of B (θ) B>
0 evolve continuously [29, Part 2]3, there is a

neighbourhood of θ0 the smallest eigenvalue of this matrix is necessarily positive.
2

This demonstration also shows that ∂
∂U

h(θ, U) is invertible as long as the
span of U and that of B0 have no nonzero vector in common.
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