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Abstract

We outline a method for performing single-view reconstruction. There
exist many possible approaches, using different techniques and assump-
tion, reaching various degrees of automatism and we focus on the recon-
struction of environments that are rich in planes, alignements, symmetries,
orthogonalities and other forms of geometrical regularity. Finding these
3D properties in images is best done -as of today- by the human visual
system and we assume that a human operator provides this geometric
information. Also, the operator has chosen from the image the 2D points
whose 3D position will be estimated. Given this 2D information and some
geometric information about the corresponding 3D points, we determine
whether the 3D shape is defined uniquely and how to reconstruct it. The
proposed method expresses the geometric constraints as a system of lin-
ear constraints and transforms the reconstruction problem into a linear
algebra problem, with the benefit that properties of the reconstruction
problem can be deduced from those of the linear problem.
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1 Introduction

We consider the problem of obtaining a 3D reconstruction from 2D points lo-
calized in a single image and from some geometric information concerning the
corresponding 3D points. Planarity, colinearity, known angles and other geo-
metric properties, provided by a “user” will be used to disambiguate the scene
and, if possible, obtain a unique reconstruction. We will address the impor-
tant questions that arise when solving this problem while omitting the proofs.
Also, we do not provide a sensitivity analysis of the reconstruction method,
which is best done using other techniques. This document focuses on finding
out whether the input data is coherent and sufficient and provides means to
compute a reconstruction using tools of numerical linear algebra.



Figure 1: Left: Simple dataset consisting in 2D points, numbered 1 to 11 and
in user-supplied geometric information about the scene. Planarities : points
{1,2,3,4} and {5,6,7,9,10,11} belong to distinct horizontal plane; points
{1,2,5,6} belong to a plane orthogonal to the “X” axis, and the sets points
{2,3,6,7}, {9,10} and {10, 11} belong to planes orthogonal to the axes “Y”, “U”
and “V” | respectively. Also, the user indicated that point 8 is mid-way along
the “V” (resp. “U”) axis between point 9 and 10 (resp. 10 and 11). Finaly, it
is known that the triplet of axes {X, Y, Z} and {U, V, Z} form right trehidra.
Right: Reconstruction obtained from that information, decorated with facets
and texture.

To begin with an example, Figure 1 (left) and its caption illustrate the vari-
ous kinds of geometric information that are used in the reconstruction method.
Although very simple, it illustrates all the kinds of information that are given
by the user. The desired output consists in the positions of the 3D points and
of the camera, represented by coordinates in an orthogonal basis attached to
the camera. Some camera calibration parameters are also estimated, together
with some intermediate quantities, such as the directions “U” , “V”,..., “Z” .

Having defined the problem, we introduce the mathematical symbols that
represent the quantities of interest. The coordinates of 2D points that were
identified in the image are 2 x 1 vectors x1, ..., Xn, which have been normalized
so that they lie in [—1,1] x [-1,1]'. The coordinates of the corresponding 3D
points are written X;,..., X5 € R®. These points are observed by perspective
projection [8, 6] :
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where A, = 1/ (Xm3 — T3) is the inverse of the “depth”, K is the matrix of
intrinsic parameters and T = [T} T, T5] ' is the position of the camera in world
coordinates. The error term &,, is due to optical imperfections and finite res-
olution of the camera and to small errors commited when the 2D points were
localized in the image.

IFor example, pixel coordinates X = [#1,%2] € [0,w] x [0, h] are transformed into x =
[Z1 —w/2,Z2 — h/2] / max {w, h}.



The reconstruction method described in this paper can be roughly cut in
three parts. In the first, like in other published methods [9, 11, 2], the ori-
entation and calibration of the camera are estimated (Section 2). Knowing
these quantities, we transform the geometric information into a system of linear
constraints on the coordinates of the 3D points (Section 3). Finally, the 2D
observations are used to further constrain the 3D points and obtain the recon-
struction (Section 4). Also, it is shown in Section 5 how to verify whether the
user provided sufficient information. Conclusions are given in Section 6.

2 Estimating plane orientations and camera cal-
ibration

The calibration of the camera and orientation of the considered planes can be
estimated from vanishing points using the well-known method of Caprile and
Torre [1], which we briefly overview.

The vanishing points themselves are obtained by identifying, thanks to the
geometric information provided by the user, sets of 3D points that belong to
segments lines to some directions of interest. For example, in Figure 1, points
{1,2}, {3,4} and {5,6} belong to three distinct lines parallel to the “X” di-
rection. The vanishing point corresponding to the “X” direction can e.g. be
found as the 2D point that minimizes the sum of squared distances to the 2D
lines defined by points {1,2}, {3,4} and {5,6}. In order avoid problems with
points at infinity, vanishing points will be represented by a vector g € R3 that
furthermore verifies ||g|| = 1. We assume from now on that the vanishing points
g1, ---, &5 of the directions “U” ,..., “Z” have been estimated.

In short, there are two important ideas to the calibration method of [1].
First, one notes that a 3D direction can be identified with its vanishing point
(Figure 2). That is, an observed vanishing point g; differs from the corre-
sponding 3D direction v; only by the transformation induced by the calibration
parameters :

g; = AKv; for some A\ € R.

Second, if three vanishing points are known, of three 3D directions that
form a right trihedron (i.e. each pair forms a m/2 angle), then any deviation
from orthogonality in the observed vanishing points is only due to the matrix of
calibration parameters. As a consequence, finding the calibration is equivalent
to finding the 3 x 3 matrix K of the form of Eq. (1) that “rectifies” the vanishing
points so that they become two-by-two orthogonal. Except in some not-so-rare
critical configurations (we do not enter this subject here), it is possible to obtain
K by solving numerically a system of nonlinear equations.

In what follows, we assume that the first three vanishing points g1, g2, g3
correspond to three mutually orthogonal directions and that the calibration
matrix K has been estimated, e.g. by the method of [1]. Once the camera is
calibrated, estimates of the directions v; are computed by :

v; = /\71K71gz’. (2)
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Figure 2: Left:A 3D direction can be identified with the coordinates of its
vanishing point in a calibrated image because the vector defined by the optical
center and the vanishing point is parallel to the 3D direction.

Right: The symmetry in the pyrammid in Figure 1 can be expressed as an
equality of distances between pairs of parallel planes. For example, the signed
distances between the pairs of planes (m;,m2) and (w2, 73) are opposite.

3 Using geometric clues

Having identified and estimated the directions v; that are relevant in the con-
sidered scene, the geometric information provided by the user can be converted
into linear equations that constrain the coordinates of the 3D points.

Planarity In order to express that points X, and X,, belong to a plane with
normal v;, it is equivalent to say that :

v X, —X,)=0. (3)

(3

Since the v; have been estimated, one has a linear constraint on X,,, and X,,. If
a plane contains N' points, e.g. Xy, ..., X7, then N’ — 1 equations of this kind
can be found, for example by writing Eq. (3) with (m,n) = (1,2),...,(m,n) =
(N' —1,N"). Tt can be verified that these equations are independent, that they
imply that the points are coplanar and that, reciprocously, if the points are
contained in a plane with normal v;, then these equations are verified. In other
terms, these N' — 1 equations are equivalent to saying that the 3D points belong
to a plane with normal v;.

Ratio of distances between pairs of parallel planes We now show how
some symmetries and other types geometric properties can also be expressed by
a linear equation. Going back to the example in Figure 1, the fact that «point
8 lies midway along the “V” axis between points 9 and 10» can equivalently be
expressed by the equation :

vy (Xg —Xy) = —v3 (X5 — Xyo), (4)



where it is assumed that vs defines the “V” axis. Figure 2 (right) shows the
geometric interpretation of this equation. A more general way of expressing this
type of geometric constraints is given in the following equation :

v (X = Xp) +av] (X, —X,) =0. (5)

2

Here, the distances are not necessarily equal, but have a known ratio a. Also,
by taking v; # v;, the distances need not be taken along the same direction.

Origin of coordinates Finally, it is convenient to fix the origin of the ref-
erential, for example so that it coincides with the center of mass of the recon-
struction. This can be expressed by the following three linear equations :

s, ..., I5] X = O3, (6)

where Q31 represents a 3 x 1 matrix of zeros and I3 is the 3 x 3 identity matrix.

The constraints and their solution Joining together all the geometric in-
formation, converted in linear equations Eq. (1), Eq. (5) and Eq. (6), one gets
a single system :

BX = Opmx1, (M)

where X = [X[, ..., X]\—,]T is a 3N x 1 vector holding all the coordinates of the
3D points and B is a M x 3N matrix holding the coefficients of the equations.
This equation characterizes the sets of configurations of N 3D points that verify
the geometric constraints, for the considered directions vy, ...,vp.

In other terms, the nullspace [10] of B is the set of all vectors of coordinates
X € R3N that verify all the geometric constraints supplied by the user. If U is
a 3N x () matrix whose columns form an orthonormal basis of the nullspace of
B, then any vector X that verifies all the geometric constraints can be written

X =UV (8)

for some vector V € R®. This equation thus parameterizes the set (linear sub-
space of R3V) of collections of 3D points that verify all the geometric constraints
supplied by the user.

It is to some extent possible to determine whether the user provided coherent
geometric information by examining B and U. First, if B has full rank, then
its nullspace is {0} C R®", which indicates that a configuration of 3D points
verifies all the geometric constraints only if all the points are equal and most
likely indicates that the user made an error in the specifications of the geometric
constraints. If B is not full rank, and if two triplets of rows of U, numbered
{3m —2,3m —1,3m} and {3n —2,3n — 1,3n} are equal, then the geometric
constraints given by the user imply that the two 3D points X,, and X,, are
equal. Since these 3D points correspond to distinct 2D observations x,,, and x,,,
this most likely indicates a mistake by the user. These tests for checking the
coherence of the geometric information will be completed in Section 5 by a test
on its sufficiency.



Figure 3: Left : If the dominant directions v; and v; are different, then points
X; and X, that belong simultaneously to a plane with normal v; and a plane
with normal v; are constrained to belong to a line. ~Right : If the dominant
directions v; and v; are equal, the same planarity properties only constrain the
points X; and X5 belong to a plane, and there is one extra degree of freedom.

An important assumption should now be made, that the rank of B (i.e.
the number of columns of U) does not change when the directions vy,...,vp
are subject to small changes. This ensures that the nature of the shape is not
changed because of the errors in the estimated v;.

To illustrate this point (figure 3), one may e.g. consider two points X, Xa
constrained to lie on two planes with normals v; and v; respectively. If these
vectors are not colinear, then the points are constrained to lie on a line and this
configuration is characterized by 4 parameters : the position of the line (two
parameters) and their abscissa on the line (2 x 1 parameters). If we built the
matrix B corresponding to these planarity constraints, one would obtain a 2 X 6
matrix of rank two and the corresponding matrix U is 6 x 4.

Now, if v; and v; are colinear (figure 3, right), then the points are only
constrained to lie on a plane and the configuration is characterized by five pa-
rameters, one for the plane and 2 x 2 to specify the positions of the points in
the plane. In terms of the framework introduced above, the matrix B now has
rank one and U is 6 x 5.

There exist other more suble situations in which, for some configurations of
the v;, the rank of B and the size of U vary when the v; are subject to small
perturbations. In these cases, the matrices B obtained from the “true” vectors
v; and from those estimated by Equ. (2) are likely to differ in rank and the
resulting matrices U will differ in size. Our assumption thus says that we are
not in one of these cases. In practice, such cases are rare and our assumption
does not constitute a limitation.



4 Using 2D observations

We now use the 2D observations x1, ..., Xy to add extra linear constraints on X
and T and obtain the reconstruction of the scene. Recalling that the collinearity
of two 3D vectors can be expressed by saying that their cross product is zero,
one sees from Eq. (1) that :

[Xf]xK(xm—T):—\[X{n]x[%n ] (9)

Small error term

Each 3D point X,, (and T) is thus constrained by three linear equations
that form a system of rank two - the remaining indeterminacy is the detph. By
joining together the equations of this type obtained from all observations, and
ignoring the error term in the right hand side, one obtains a system (of rank
2N) :

S1 =S
X + : T=AX+ LT = O3nx1, (10)
SN —SN

~ / ~ /

A L

where each 3 x 3 block S,,, has the form :

0 -1 Im2
1 0 —Tmi K.
—Tm2 Tmi 0

In order to limit the search for solutions of Eq. (10) to the configurations of
3D points that verify all the geometric constraints, one may replace Eq. (8) in
Eq. (10), and obtain :

AUV — LT = [AU | I] [ M ] — Osnxi- (11)

In the absence of error in the observations and if the matriz [AU | L] has
corank equal to one, then this system has a unique (up to scale) solution V* €
R?, T* € R3, and the reconstructed 3D points and camera position are have
the form :

X:p@ and T = puT*,
X+
where p is an arbirtrary scale factor.

It should be noted that if [AU | L] has corank two or more (has two or more
singular values equal to zero), then the [V; T] that solve Eq. (11) form a space
of dimension two or more, and thus the solution is not unique up to scale. This
occurs when the geometric information provided by the user is not sufficient, and



it is important to detect these cases. We assume until the next section that the
user provided sufficient information and show how to obtain the reconstruction
in the presence of noise.

In the presence of noise, the singular values of [AU | L] are usually altered
so that this matrix has full rank and Eq. (11) does not have an exact solution.
In that case, one finds a solution “in the total least-squares sense” [7] by setting

e
[V*T T*T] to be the singular vector of [AU | L] corresponding to the least

singular value. The resulting reconstruction X = UV™ still verifies exactly (up
to machine precision) the geometric constraints.

5 Caveat : are the geometric clues sufficient?

In this section, we show how to determine whether the user provided sufficient
information to define uniquely the reconstruction. As was noted, in the absence
of noise, a unique reconstruction is defined only if the matrix [AU | L] has corank
equal to one. In the presence of noise, the rank of this matrix is altered, so that
it is not possible to use it directly to determine whether sufficient information
was provided.

One solution would be to use a threshold on the smallest singular values of
this matrix in order to decide whether its corank should be considered to be one
or two. This approach requires studying the perturbation of the singular values
of the matrix and the resulting test would have a nonzero probability of failure.

For these reasons, we adopt a different path, which allows to determine
whether the input data is sufficient to define a unique reconstruction in a way
that is totally insensitive to noise in the observations. This method results from
the observation that a matrix “analogous” to [AU | L] can be built without using
the noisy observations and whose corank is one if and only if the user provided
sufficient geometric information.

First, one notes that it is possible to build a collection X’ of 3D points that
verify the geometric constraints specified by the user, by randomly choosing a
vector V/ € RM and taking X' = UV'. Then, a random camera position T is
chosen and the perspective projections x{,...,x) are computed using Eq. (1).
From these noiseless 2D points, matrices A’ and L' are built in the exact same
way that A and L were built from the x;.

The resulting [A'U | L'] has many properties that [AU | L] would have in
the absence of noise, because it is obtained from the noiseless observation of a
collection of 3D points that verify the same geometric properties. In particular,
if the geometric information is sufficient, then the set of 3D collections that
verify both the geometric constraints (i.e. are of the form X = UV for some V)
and project to the 2D points x},...,x is of the form {uX'| x € R}. Indeed,
the contrary would indicate that the reconstruction is not defined uniquely, up
to a scale factor by the geometric information and 2D points. Reciprocously, if



the data is not sufficient, then the equation

[A'U| L] [ ¥ ] = O3nx1 (12)

will have solutions that are not of the form
\ 2 \'%A
T - /J/ TI Y

T
and matrix [A'U |L'] has corank two or more (since [V’ T T] belongs to

its nullspace, as well as another vector that is not colinear to it). Thus, the
dimension of the nullspace of [A'U | L'] -its corank- indicates whether the input
data is sufficient or not. Since this matrix can be computed without using
the noisy observations, it provides a test for the sufficiency of the geometric
information that is totally insensitive of the noise in the observations.

6 Conclusions, extensions

We have thus shown how the problem of reconstruction of scenes from 2D points
and geometric information can be treated with tools of linear algebra, with the
benefit that the coherence and sufficiency of the geometric information can be
determined.

The proposed method can be (and has been, in other publications [3, 4])
extended in many ways, for example to treat many images simultaneously and
to reconstruct many disconnected objects in the scene, whose relative scale
cannot be determined.

Our study focuses on expressing the reconstruction problem in terms of
linear systems, but it does not consider the sensitivity of the reconstruction
with respect to noise in the observations. In order to treat the problem of
reconstruction in such a way that the precision is known, a different approach
and different tools should be used. For example, the framework of maximum
likelihood estimation is used in [5]. Because that method is iterative, it should
be initialized, for example with the method proposed in the present study.
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