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Abstract

We present a theory of boosting probabilistic classifiers. We place ourselves
in the situation of a user who only provides a stopping parameter and a prob-
abilistic weak learner/classifier and compare three types of boosting algorithms:
probabilistic Adaboost, decision tree, and tree of trees of... of trees, which we
call matryoshka. “Nested tree,” “embedded tree” and “recursive tree” are also ap-
propriate names for this algorithm, which is one of our contributions. Our other
contribution is the theoretical analysis of the algorithms, in which we give training
error bounds. This analysis suggests that the matryoshka leverages probabilistic
weak classifiers more efficiently than simple decision trees.

1 Introduction
Ensembles of classifiers are a popular way to build a strong classifier by leveraging sim-
ple decision rules -weak classifiers. Many ensemble architectures have been proposed,
such as neural networks, decision trees, Adaboost [1], bagged classifiers [2], random
forests [3], trees holding a boosted classifier at each node [4], boosted decision trees...
One drawback of ensemble methods is that they are often dispendious about the compu-
tational cost of the resulting classifier. For example, Adaboost [1], bagging [2], random
forests [3] all multiply the runtime complexity, by a factorapproximately proportional
to the training time.This is not acceptable in applicationsinvolving large amounts of
data and requiring low-complexity method, such as video analysis and data mining.

Many approaches have been proposed to deal with such situations. The cascade
architecture, i.e. a degenerate decision tree, has become very popular [5] and has been
intensely studies [6, 7]. However, cascades are mostly appropriate to detect rare exem-
plars of interest amongst a huge majority of uninteresting ones.

Decision trees, on the other hand, are better adapted to the case of balanced target
classes. This advantage comes from their greater facility to decompose the input space
into more manageable and useful subsets. In addition, theirrun-time complexity is
approximately proportional to the logarithm of the training time. Counterbalancing
these advantages, is the fact that decision trees tend to overfit the training data.

There exist many proposed methods to improve overfitting, for example pruning
and smoothing, but the main recognized cause remains: data elements are passed to
one only of the descendant of each node, whether during training, or at run-time. At
run-time, one proposed solution is to pass examples along more than one child node [8].
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Construction of a matryoshka tree
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Figure 1: Left: Construction of a matryoshka decision trees. Here, each tree has just
two nodes, but other numbers are possible. Right: notation use to specify a path in a
decision tree.

During training, it has been proposed [4] to pass down to all descendants the exemplars
that lay within a fixed distance of the separating surface.

Our approach to avoid the hard split at each node is to consider that the examples
have a certain probability -not necessarily always 0 or 1- ofbeing passed to any de-
scendant of the tree. That is, we study probabilistic decision trees [9], but pursue a
different analysis from these last works. First, we show that probabilistic decision trees
are eminently tractable within the framework of boosting1.

We bound the expected misclassification error as a function of the number of nodes
in the tree, in Section 4. This bound is very high when the probabilisticweak classifiers
are very weak. Moreover, we present arguments that suggest that any bound using the
same probabilistic weak learner hypothesis will necessarily be high.

However, we also note that the bound achieved with stronger weak classifiers is
much better. In an attempt to strengthen our weak classifiers, we explore the possibility
of assembling decision trees consisting of decision trees,the inner and the outer trees
being built by the same algorithm. This is not the first time this idea is suggested, but
we believe we are the first to show the theoretical benefits of doing so.

Continuing on the idea of embedding (or nesting) decision trees one into another,
we propose to assemble trees of trees of ... of trees of probabilistic weak classifiers.
This is similar to matryoshka dolls, with the difference that each tree contains more
than one tree, rather than a single other doll. Figure 1, left, illustrates this concept. Our
main contribution (Section 5.2) is to prove a greatly improved bound, reached by trees
with exactly two nodes, each node being a tree with two nodes,and so on until the last
nesting level, which holds two probabilistic weak classifiers.

Another merit of our study is that it proposes a methodology that is essentially pa-
rameterless. The user only needs to provide a probabilisticweak learner and a stopping
criterion, such as the number of nodes or the error on the training dataset. If a stop-
watch2, is available during training, then we propose ways of usingit. The freedom of
parameters results partly from applying a principle of greedy error minimization.

Before presenting our study on decision trees, we define, in Section 2, the prob-
abilistic weak learners that are the basis of this work. We then present, in Section 3,

1The analogy between deterministic decision trees and boosting has been studied in [10].
2This metaphor is to say that, if the time complexity of the learner and classifier are known or measurable,

then this information can be used to greedily reduce the training error.
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the probabilistic equivalent of Adaboost that will serve asreference for the rest of the
article. After presenting our main theory in Sections 4 and 5, we discuss further the
findings of this study and open directions for future research.

2 Probabilistic weak learner
We consider learning algorithmsA that, given a training datasetS = f(X1; y1; D(1)) ;(X2; y2; D(2)) ; : : : ; (XN ; yN ; D(N ))g ; with D (1) + : : : + D (N ) = 1, return a
probabilistic classifier, or oracle, writtenh (X). For any inputX, h (X) is identified
with a Bernoulli random variable with parameterq (+; X).
Definition: We say thatA is a probabilistic weak learner, if there exists a constant0 < " � 12 such that, for any datasetS, the expected error ofh (X), is smaller

than 12 � "; that is, one has:NXn=1D (n) q (�yn; Xn) � 12 � ";
whereq (�yn; Xn) is the probability thath (Xn) takes the value�yn, i.e. that
the classifier is wrong.

The constant", called theadvantageor edgeis unknown and does not need to be
known. The probabilityq (yn; Xn), also unknown, will be needed. We estimate
it by calling repeatedly the weak classifier and calculatingthe maximum likelihood
(ML) or maximum a-posteriori (MAP) estimates: Ifh1;n; : : : ; hR;n are the values re-
turned byR invocations (observations) ofh (Xn), then the ML estimate is~q (y;Xn) =jfn j hr;n = ygj=R, wherej:j is the set cardinal. Assuming thatq (y;Xn) is uni-
formly distributed in[0; 1℄3, the MAP isq̂ (y;Xn) = 1R+2 (1 + jfn j hr;n = ygj).
3 Adaboost for probabilistic weak learners
We now adapt Adaboost [1] to probabilistic -rather than deterministic- weak learners.
Like the original Adaboost, we consider classifiers of the formH (X) = TXt=1 �t;Xht (X) ;
but here,ht (X) is a Bernoulli random variable (or randomized classifier or oracle),
so thatH (X) is itself a random variable. Like in Adaboost, we consider domain-
partitioned weights (see [1, Sec. 4.1]): we have constants�t;+ and�t;� such that�t;X = �t;+ if ht (X) is observed to be+1, and that�t;X = �t;� otherwise.

We proceed as in Adaboost, increasing the numberT of weak classifier, and not
changing a weak classifier once it has been trained. Each random classifierht (X) is

3This prior is pessimistic, sinceq (yn; Xn) has (unknown) expectation smaller than12 , but the edge"
being unknown, using another prior would not be less hazardous.
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obtained by running the weak learner on the training data set(X1; y1) ;: : : ;(XN ; yN ),
with weightsDt (n) ; 1 � n � N chosen to emphasize misclassified examples. The
weight update rule is:Dt+1 (n) = Dt (n) �q (t;+; Xn) e��t;+yn + q (t;�; Xn) e�t;�yn� =Zt; (1)

whereZt = PNn=1Dt (n) (q (t;+; Xn) e��t;+yn + q (t;�; Xn) e�t;�yn) normalizes
the weights so they sum to one.

With a deterministic weak classifier, one would haveq (�; Xn) 2 f�1;+1g, re-
sulting in the original Adaboost weight update rule. An additional difference is that theq (�; Xn) are unknown. We address this issue in Sec. 3.2 and assume for now that the
we have estimateŝq (�; Xn).
3.1 Boosting property
We now give an upper bound for the expected misclassificationerror ofH (X), and
show how to choose the weights�t;�. This derivation parallels that of [1]: the expected
training error isE (Loss) = NXn=1D (n)E ([[H (Xn) 6= yn℄℄) � NXn=1D (n)E �e�H(Xn)yn� : (2)

where[[:℄℄ is the “indicator function,” being 1 if the bracketed expression is true and
zero otherwise.

SinceH (Xn) may take at most2T possible values, depending on the outputsst,1 � t � T , of theT classifiersht (Xn), one has:E �e�H(Xn)yn� = Xs1;:::;sT TYt=1 q̂ (t; st; Xn) e��t;styn= Xs1;:::;sT�1 T�1Yt=1 q̂ (t; st; Xn) e��t;stynDT+1 (n)ZTDT (n)= Xs1;:::;sT�2 T�2Yt=1 q̂ (t; st; Xn) e��t;stynDT (n)ZT�1DT�1 (n) DT+1 (n)ZTDT (n)= : : :etc: : := DT+1 (n)D1 (n) TYt=1Zt:
Summing over all samples, one gets the familiar expressionE (Loss) � TYt=1Zt:

The rest goes as with Adaboost: eachZt is minimized by setting�t;+ = 12 log�W++tW+�t �
and �t;� = 12 log�W��tW�+t � ;
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whereW abt =Pnjyn=bDt (n) q̂ (t; a; n), for anya 2 f+1;�1g ; b 2 f+1;�1g : For

this choice of�t;�, one hasZt = 2pW++t W+�t +2pW�+t W��t , and one can show
thatZt � p1� 4"2 = �. The expected error of theT -stage boosted probabilistic
classifier thus has the same bound as the error of Adaboost:E (Loss) � �p1� 4"2�T �= �T (3)

It must be made clear that, in practice, during training, theusers only haveestimates
of q (t;�; n), so that they reducean estimateof the bound of the expected error.

3.2 Estimation ofq (�;Xn) during training
In this section, we show how users can, in practice, balance their need for accurate
estimates of theq (t;�; n) with their eagerness to reduce the estimate on the bound of
the expected error (the reader may skip this part in a first reading).

The difference with respect to Adaboost is that, once the classifier has been trained,
the user has to estimate theq (T;�; n), in order to computeDT+1 (n) for the next
classifier. The question is thus “how many samples ofhT (Xn) should be taken?” The
trivial answer, which we exclude, is to fix some numberR of samples and use the
corresponding MAP or ML estimates. We exclude for now this approach, to avoid
adding an extra parameterR. We propose, instead, two approaches based on the MAP
estimator ofq (t;�; n).

Let us first compare the MAP and ML estimators, to later betterexplain our prefer-
ence for the MAP. Both the MAP and ML converge in probability to the true value, so
that the corresponding estimators ofZt also converge in probability to the true value.
The MAP and ML differ in that the MAP estimator ofq (T;�; n) is biased towards12 ,
and that ofZT is biased towards1. More precisely, the expected value of these MAP
estimators converge to the their limitsfrom above, so that the expected value of succes-
sive estimates ofZT decreases towards the true value. Thus, after samplinghT (Xn)
R times, sampling once more is always expected to decrease the estimate ofZT :
First approach to estimateq (T;�; n): The MAP thus has the advantage of provid-
ing a natural stopping time, that of the first observed increase in our estimate ofZT .
The event thatZT increases has a probability that increases towards1=2, so that it will
almost always (in the probabilistic sense) happen after a finite time. This strategy can
also be used with the ML estimator, but, having a greater variance, it is more likely to
result in a spuriously low estimate ofZT and early stops. On these grounds, the MAP
should thus be preferred over the ML.

Second approach: An alternative method involving some look-ahead, and the user´s
stopwatch, may be also be considered: having until now trainedT classifiers and sam-
pledR timeshT (Xn) ; 1 � n � N , the user has the following options:

A Train a new classifierhT+1 (X), using the current estimate ofq (T;�; n) in the
calculation ofDT+1 (n). Then samplehT+1 (Xn) ; 1 � n � N once, resulting
in a first MAP estimate ofZT+1. As a result, the user decreases the estimated
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bound, now
Qt�T+1Zt, previously

Qt�T Zt, by the factorZT+1. Also, the user
measured, with his or her stopwatch, the elapsed timeSA during training and
sampling. The instantaneous bound decrease rate per unit oftime is(ZT+1)1=SA.

B Sample once morehT (Xn) ; 1 � n � N , producing a new estimateZ 0T . As a
result, the user decreases (or increases) the estimated bound by a factorZ 0T=ZT .
Again, with his or her stopwatch, (s)he measured the elapsedtime SB . The
instantaneous bound decrease rate is(Z 0T=ZT )1=SB .

Finally, based on the smallest bound decrease rate, the userdecides whether to keep
the new classifierhT+1 (X) or the new estimateZ 0T .

We have thus proposed two parameterless ways to estimateq (T;�; n).
4 Boosting decision tree
Having shown how Adaboost can be transposed to probabilistic weak learners, we now
further extend our study to probabilistic decision trees.

Computationally, our proposed classifier is a smoothed binary decision tree. In that
model, the outputH (X) is a weighed sum of the (random) classifiers on the nodes
traversed by an input elementX :H (X) = T (X)Xt=1 �s(t;X)hs(t�1;X) (X) ; (4)

wheres (t;X) is the index of thetth node reached by inputX, hs(t�1;X) (X) 2f�1; 1g is the output of the corresponding classifier andT (X) is the depth of the
last inner node reached byX before exiting the decision tree. The weight given tohs(t�1;X) (X) , �s(t;X) is domain-partitioned, since it depends on the observed value
of hs(t�1;X) (X).

Some notation is needed: the index of a nodes is a sequence of “+” and “�”,
indicating the path to that node. For example, in Fig. 1, right, s = (+;+;�) is the leaf
reached by following the “+” edge out of the root node, then the “+” edge out of the(+) node, then the “�” edge out of the(+;+) node. The output of the classifier, when
an input exits the decision tree bys, is thusH (X) = �+ + �++ + �++�.

For additional convenience, we write�s the index of the parent of nodes (�s =(+;+) in the previous example) and_s the last edge followed to reachs (here, _s = �).
Thus, one may writes = (�s; _s). The root node iss (0; X) = ;. With this notation, and
noting thatH (X) only depends on the leafl (X) reached byX, one has:H (X) = X;<s�l(X)�s _s �= Hl; (5)

where the sum is taken over all nodess between the leafl and the root; (exclusive).
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4.1 Decision trees with probabilistic nodes
Like most other decision tree-building algorithms [11, 12], we add nodes one at a
time and do not modify previously added nodes. This is the most common way of
avoiding the inherent complexity [13] of building decisiontrees. We do not consider a
subsequent pruning step. Unlike other decision trees, and like in Adaboost, each node
is trained on the whole dataset.

However, we modulate the weights of the examples, not only based on whether
they are misclassified (as in Adaboost), but also based on their probability of reaching
the node. After having trainedhs (X) with weightsDs (n), 1 � n � N , the weights
for training the children nodess+ ands� are:Ds+ (n) = Ds (n)Zs+ q (s+; Xn) e��s+yn and Ds� (n) = Ds (n)Zs� q (s�; Xn) e��s�yn :

(6)
In this expression,Zsa = PNn=1Ds (n) q (sa;Xn) e��sayn , for a 2 f+;�g, are
normalizing constants, andq (s+; Xn) 2 [0; 1℄ is the (unknown) parameter of the
Bernoulli random variablehs (X). Like in Sec. 3, we use estimateŝq (s+; Xn) in
place of the true values.

4.2 Bound on the expected error
We now bound the error of the boosting tree algorithm and specify the weights�s and
the choice of the trained node at each step.

Using again the exponential error inequality Loss(H (X) ; y) � e�H(X)y, Eq. (2),
the expected misclassification error for a training exampleXn is upper-bounded byE �e�H(Xn)y� = Xl: leafH p (l; Xn) e�Hlyn ; (7)

wherep (l; X) is the probability of an inputX reaching the leafl. More generally,
assuming independence of the outputs of classifiers at each node, the probability thatX reaches a nodes = (s1; s2; : : : ; sT ) isp (s;X) = q (s1; X) � q (s1s2; X) � : : : � q (s1 : : : sD; X) = Yr�s q (r;X) ;
where the product is taken for all nodes between the root ands.

The error bound is thusE �e�H(Xn)y� = Xl: leafH0�Ys�l q (s;Xn)1A e�Hlyn= Xl: leafHYs�l �q (s;Xn) e� _s�syn�= Xl: leafHYs�l�Ds (n)D�s (n)Zs�= Xl: leafHDl (n)Ys�lZs
7
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Summing over all examplesXn, 1 � n � N and replacing in Eq. (2) yields the bound:E (Loss) � Xl: leafHYs�lZs (8)

Like above, eachZs is minimized by setting�s = 12 log� W _s _s�sW _s: _s�s � ; whereW ab�s = Xnjyn=bD�s (n) q (a; n) ; a; b 2 f+;�g ;
and: is the negation operator. For these values of�s, eachZs is takes the valueZs = 2qW _s+�s W _s��s :

This bound can also be found, in slightly different contexts, in our previous work [14]
and in our unpublished manuscript [15]. In the present paper, we additionally study
how this bound evolves with the size of the tree.

Expected error bound as a function of the tree size

We now describe the evolution of the bound (8) when the tree isgrown by a greedy
bound-reducing algorithm.

As previously, we may show thatZs+ + Zs� � p1� 4"2 = �, owing to the
probabilistic weak learner hypothesis.

We now proceed recursively. After training and incorporating T nodes, the ex-
pected error bound isC (T ) = Pl: leafHQs�l Zs. At this point, the tree hasT + 1
leaves, so that one leafl at least has an error not less thanC (T ) = (T + 1). After
training a probabilistic weak classifier atl, the new error bound isC (T + 1) = C (T )�Ys�lZs + Ys�l�Zs + Ys�l�Zs= C (T ) +0�Ys�lZs1A (�1 + Zl+ + Zl�)� C (T ) + �C (T )T + 1� (�1 + �)= C (T )�T + �T + 1� :
SinceC (0) = 1, we have the general relationC (T ) � TYt=0 t+ �t + 1 = 1TB (T; �) �= F (T; �) ' T ��1� (�) ; (9)

whereB (T; �) is the beta function and� (�) is the Gamma function. The rightmost
term is the asymptotic approximation for largeT ; it is coherent with the bound of d[10,
Eq. 6].

This bound is interesting in more than one respect:
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Figure 2: Left: Bound of boosted decision tree (full curve, highest), Eq. (9), of proba-
bilistic Adaboost (dotted, lowest), Eq. (3), and of matryoshka (dashed, middle). From
top to bottom,� 2 �3132 ;78 ;34 ;12 ; 14	, i.e. " 2 f0:12 ;0:24;0:33;0:43; 0:46g. Right:
Bound of boosted tree of simple trees, given by Eq. (10).

– It appears that it cannot be very much improved, in the following sense: consider
a probabilistic learner with error1=2 � ", independently of the weightsD (n)
with which it is trained. This learner verifies the probabilistic weak learner hy-
pothesis. Now, for both the probabilistic Adaboost and for a(balanced) decision
tree,H (X) is a binomial random variable with parameters(1=2� "), and the
number of weak parameters traversed byX. This second parameter isT for Ad-
aboost andlog2 (T ) for the decision tree. It is clear, then, that the decision tree
requires exponentially more weak classifiers than the probabilistic Adaboost.

– This bound is especially bad for very weak classifiers (� ' 1). The full curves
in Figure 2, left, plot the boundF (T; �) for � = 31=32, 7/8, 3/4, 1/2 and 1/4.
For comparison, the expected error bound of Adaboost,�T , plotted alongside, is
much lower, especially for� = 31=32.

– This bound calls the attention of designers of decision trees tempted to pass all
the training dataset along all branches: if the weak classifier is very weak, the
number of needed weak classifiers may grow very much. With stronger classi-
fiers, the boosting tree algorithm may be more practical.

5 Matryoshka decision trees
Based on the conclusion of the previous section -that stronger classifiers yield better
boosted decision trees, we now address the question of obtaining sufficiently strong
classifiers. The first step in this direction (Section 5.1) isto explore the idea of putting
a boosted tree at each node. We will see that there is an advantage in doing so. It will
then be natural, in Section 5.2, to build trees of trees of trees of ... of weak classifiers,
that is, a matryoshka of decision trees.

5.1 Bound for a tree of trees
In this section, we study the error bounds obtainable by a decision tree built using the
method of Section 4, but where the nodes are themselves treesbuilt according to that

9
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same method. We place ourselves in the situation of having the resource to train a
fixed numberT of weak classifiers, and our objective is to minimize the bound on the
expected error.

In this context, it is natural to study the bound obtainable by assemblingT2 sub-
trees of fixed sizeT1 = T=T2. By Eq. (9), the error bound for the sub-trees isF (T1; �) = (T1B (T1; �))�1, and that of the outer tree isF � TT1 ; F (T1; �)� : (10)

Figure 2, right, plots this bound plotted againstT1. The curves show that, forT1 = 1
andT1 = T , the bound is the same asF (T; �), i.e. that of a not-nested decision tree.
More interestingly, for intermediate values ofT1, the bound of Eq. (10) is always lower
thanF (T; �). In particular, the minimum is always nearT1 = pT .

Given these encouraging results, we are naturally tempted to substitute the sub-
trees (of sizeT1) byT 01 sub-trees of sub-sub-trees of sizeT 001 , for someT 01, T 001 s.t.T 01T 001 = T1. The same idea can also be applied to the outer tree.

5.2 Bound for a tree of trees ... of trees of weak classifiers
More generally, we are tempted to determine the bounds reachable by trees of trees of
... of trees of weak classifiers. For someL andT1;T2,: : :TL s.t. T1T2 : : :TL = T , the
bound is easily shown to be:F (TL; F (TL�1; : : :F (T1; �))) :
Finding analytically the optimal combination ofTi, 1 � i � L may not be easy.
But, guided by the observation that, forL = 2, the optimal choice seems to be nearT1 = T2 = pT , we naturally consider the caseT1 = T2 = : : : = TL = T 1=L. In this
case, the bound is F �T 1L ; F �T 1L ; : : :F �T 1L ; ���� : (11)

The black graph in Figure 3 plots this value against the nesting levelL, with the
original boundF (T; �) (top) for comparison. This figure clearly shows that deeper
nesting levels improve the bound. In fact, Eq. (11) continues to decrease forL >log2 T , i.e. when the trees each have less than two nodes.

This (strange) effect is due to the fact thatF (T; �) is defined for any positive realT . Since the number of nodes is in an integer, there are no practical repercussions.
However, these curves clearly indicate that smaller sub-trees yield better bounds.

This suggests building the smallest possible trees, with just two nodes, each node a tree
with two nodes, etc, until the last level, consisting of trees with two weak classifiers.

5.3 Bound for 2-matryoshka
We now derive the expected error bound for the “2-matryoshka” tree, having exactly
two nodes, at all nesting levels, having precisely two nodes. We thus need to assume
thatT = 2L is a power of two.

10
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Figure 3: Black curve: bound on error of matryoshka decisiontrees at various levels of

nesting. The sub-tree sizes areT 1=(nesting level). Light-colored curves near the black
curve are for trees w/ integer number of nodes. . The topmost line marks the error
bound of the (not nested) decision tree. At left,T = 1024, andT = 65536 at right.
These curves are for� = 3132 i.e. " ' 0:12.

We callM2 (T; �) = F (2; F (2; : : :F (2; �))) the bound for this tree (there areL
nested parentheses). Recalling from Eq. (9) thatF (2; �) = �1+�2 = 12� + 12�2, one
writesM2 (T; �) as a polynomial of degreeT .

Figure 2, left, shows the graph ofM2 (T; �), in dashed lines. This figure shows that
the 2-matryoshka tree has a much stronger boosting ability than the plain boosting tree,
and this is the main result of this paper.

5.4 Building a matryoshka
The algorithm for the 2-matryoshka would thus be: train a two-leaf tree (stage “b”, in
Fig. 1), and collect the leaves into a single node (“c”). Train a two-leaf sub-tree on one
of the branches, collect its leaves in a single node (“e”). Collect the leaves once more
(“f”) etc. If all weak classifiers have the same edge", then this approach is the most
appropriate.

In practice, the classifiers will not have the same edge and a greedy -with respect
to number of nodes or physical training time- bound-decreasing approach could be
considered. Each time a classifier is added to the tree, we will consider each sub-
tree containing that node, starting from the top. For each sub-tree, we compare the
instantaneous bound decrease rate4 of the sub-tree atT ,_CSimple ' (C (T + 1)�C (T � 1)) =2; (12)

(C (T ) being computed on the sub-tree only), with that of a tree having such a sub-tree
at each node, _CMatryoshka = ��tF � tT ; C (T )� (t = T ) : (13)

If the later is smaller, then the leaves of the sub-tree are collected into a single node.
We now give the detail of computing Eq. (13). Using the relation ��xB (x; y) =B (x; y) ( (x)�  (x+ y)), where is the digamma function, (x) = ��x (log (� (x))),

4Here, we consider the decrease rate per added node, but the decrease rate per unit of training time could
be used too.
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one gets F 0T (T; �) = �F (T; �)� 1T +  (T )�  (T + �)� andF 0� (T; �) = �F (T; �) ( (�) �  (T + �)) :
The first line above then gives��tF � tT ; C (T )� (t = T ) = C (T )T �
 +  (C (T )) + 1C (T ) � 1� ; (14)

where
 = � (1) ' 0:5772 is Euler´s constant.
One can check that, forT = 1, _CSimple = _CMatryoshka and that, ifC (T ) =F (T; �), i.e. if the bound (9) is tight, then_CSimple = _CMatryoshka for all T > 1.

6 Discussion and conclusions
We have developed in this paper a theory of probabilistic boosting, aimed at decision
trees. We proposed a boosting tree algorithm and a theoretically superior matryoshka
decision tree algorithm. These algorithms are essentiallyparameter-free, owing to the
principle of choosing whichever training action most reduces the expected training
error bound, and to a judicious choice of possible training actions.

We showed bounds on the expected training error of the algorithms, one of them
discouraging, the other, encouraging. The bounds for simple trees and for trees of trees
are coherent with our early experiments.

Future developments include an analysis of the effect of approximating the node
branching probabilitiesq (s;Xn) during training and experimental evaluation of the
matryoshka.

On a more general level, we believe that the high bound for boosting trees indicates
that the probabilistic weak learner hypothesis is inadequate. This hypothesis, directly
adapted from the theory of boosting, does not take into account the fact that real-world
classifiers usually have a lower training error on smaller training sets. Our intuition is
thus that the entropy of the training weights,D (n), should be taken into account in
future work.
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