arXiv:cs.LG/0607110 vl 25 Jul 2006

Slightly expanded version of my ECML 2006 submission

A Theory of Probabilistic Boosting,
Decision Trees and Matryoshki

Etienne Grossmann
visiting at Université de Montréal
<etienne@sr.ist.utl.pt>

Abstract

We present a theory of boosting probabilistic classifiere pMéce ourselves
in the situation of a user who only provides a stopping patamend a prob-
abilistic weak learner/classifier and compare three tyfdsosting algorithms:
probabilistic Adaboost, decision tree, and tree of trees.obf trees, which we
call matryoshka“Nested tree,” “embedded tree” and “recursive tree” ase alp-
propriate names for this algorithm, which is one of our cibotions. Our other
contribution is the theoretical analysis of the algorithimavhich we give training
error bounds. This analysis suggests that the matryoshkealges probabilistic
weak classifiers more efficiently than simple decision trees

1 Introduction

Ensembles of classifiers are a popular way to build a strasgitler by leveraging sim-
ple decision rules -weak classifiers. Many ensemble aithites have been proposed,
such as neural networks, decision trees, Adabdbst [1], dzhglassifiersii?], random
forests], trees holding a boosted classifier at each riEjdedosted decision trees...
One drawback of ensemble methods is that they are oftenrdigpes about the compu-
tational cost of the resulting classifier. For example, Autet [1], baggingi2], random
forests 8] all multiply the runtime complexity, by a factapproximately proportional
to the training time.This is not acceptable in application®lving large amounts of
data and requiring low-complexity method, such as videdyaismand data mining.

Many approaches have been proposed to deal with such eitgatirhe cascade
architecture, i.e. a degenerate decision tree, has becerp@epularlis] and has been
intensely studied][] 7]. However, cascades are mostlyogpiaite to detect rare exem-
plars of interest amongst a huge majority of uninterestimgso

Decision trees, on the other hand, are better adapted t@#eeaf balanced target
classes. This advantage comes from their greater faalidgtompose the input space
into more manageable and useful subsets. In addition, theitime complexity is
approximately proportional to the logarithm of the traipitime. Counterbalancing
these advantages, is the fact that decision trees tend tiit dlre training data.

There exist many proposed methods to improve overfittingexample pruning
and smoothing, but the main recognized cause remains: bdateets are passed to
one only of the descendant of each node, whether duringriggior at run-time. At
run-time, one proposed solutionis to pass examples alomg than one child nod&[8].

Slightly expanded version of my ECML 2006 submission ‘

axy ;
L4
© §

Construction of a matryoshka tree

Index of path
S=(+,+,7)

Figure 1: Left: Construction of a matryoshka decision trdésre, each tree has just
two nodes, but other numbers are possible. Right: notaserta specify a path in a
decision tree.

During training, it has been proposéi [4] to pass down toedtdndants the exemplars
that lay within a fixed distance of the separating surface.

Our approach to avoid the hard split at each node is to congidethe examples
have a certain probability -not necessarily always 0 or 1be&ihg passed to any de-
scendant of the tree. That is, we study probabilistic denisiees[id], but pursue a
different analysis from these last works. First, we show thababilistic decision trees
are eminently tractable within the framework of boosting

We bound the expected misclassification error as a funcfidremmumber of nodes
inthe tree, in Sectidll 4. This bound is very high when the abdistic weak classifiers
are very weak. Moreover, we present arguments that suggesirny bound using the
same probabilistic weak learner hypothesis will necelyshe high.

However, we also note that the bound achieved with strongakvelassifiers is
much better. In an attempt to strengthen our weak classifiergxplore the possibility
of assembling decision trees consisting of decision triésesinner and the outer trees
being built by the same algorithm. This is not the first timis fdea is suggested, but
we believe we are the first to show the theoretical benefit®ifgiso.

Continuing on the idea of embedding (or nesting) decisieagrone into another,
we propose to assemble trees of trees of ... of trees of pildtimbveak classifiers.
This is similar to matryoshka dolls, with the differencettleach tree contains more
than one tree, rather than a single other doll. Fifllire 1, ilefstrates this concept. Our
main contribution (SectiolE.2) is to prove a greatly immw¥wound, reached by trees
with exactly two nodes, each node being a tree with two nategso on until the last
nesting level, which holds two probabilistic weak classifie

Another merit of our study is that it proposes a methodoldgy ts essentially pa-
rameterless. The user only needs to provide a probabilisiik learner and a stopping
criterion, such as the number of nodes or the error on theihgidataset. If a stop-
watcl?, is available during training, then we propose ways of uginghe freedom of
parameters results partly from applying a principle of ggeerror minimization.

Before presenting our study on decision trees, we defineeati@iR, the prob-
abilistic weak learners that are the basis of this work. Vémthresent, in Sectidll 3,

1The analogy between deterministic decision trees and ingdsas been studied ilE1.0].
2This metaphoris to say that, if the time complexity of theea and classifier are known or measurable,
then this information can be used to greedily reduce theitrgierror.

Slightly expanded version of my ECML 2006 submission

the probabilistic equivalent of Adaboost that will servereference for the rest of the
article. After presenting our main theory in Sectidhs 4 Bhaé discuss further the
findings of this study and open directions for future redearc

2 Probabilistic weak learner

We consider learning algorithrméthat, given a training datasét= {(X1, y1, D(1)),
(X2,42,D(2)),..., (Xn,yn,D(N))},with D(1) + ...+ D(N) = 1, return a
probabilistic classifier, or oracle, writtén(X'). For any inputX, & (X) is identified
with a Bernoulli random variable with parametef+, X).

Definition: We say thatd is a probabilistic weak learnerif there exists a constant
0 < e < & such that, for any datasst the expected error df (X), is smaller
thani — ¢; that s, one has:

N

Z D (n) q(=yn, Xn) <

n=1

_6,

N | —

whereq (—y,, X,,) is the probability that: (X,,) takes the value-y,, i.e. that
the classifier is wrong.

The constant, called theadvantageor edgeis unknown and does not need to be
known. The probabilityy (y,, X)), also unknown, will be needed. We estimate
it by calling repeatedly the weak classifier and calculatimg maximum likelihood
(ML) or maximum a-posteriori (MAP) estimates: #f ,, ..., hgr, are the values re-
turned byR invocations (observations) éf(X,,), then the ML estimate i§y, X,,) =

[{n | hrn» = y}|/R, where|.| is the set cardinal. Assuming thaiy, X,,) is uni-
formly distributed in[0, 1)°, the MAP isq (y, X,,) =745 (1+ {n | hrn = y}).

3 Adaboost for probabilistic weak learners

We now adapt Adaboo<ii[1] to probabilistic -rather than deteistic- weak learners.
Like the original Adaboost, we consider classifiers of thrafo

H(X)=> ayxh (X)),

but here,k; (X) is a Bernoulli random variable (or randomized classifier @cte),
so thatH (X) is itself a random variable. Like in Adaboost, we considemdm-
partitioned weights (se¢l[1, Sec. 4.1]): we have constants and o, _ such that
ae x = a4 If hy (X) is observed to be-1, and thaty, x = «; _ otherwise.

We proceed as in Adaboost, increasing the nunberf weak classifier, and not
changing a weak classifier once it has been trained. Eaclomactassifierr, (X) is

3This prior is pessimistic, sincg(y», X») has (unknown) expectation smaller thémbut the edge
being unknown, using another prior would not be less hazerdo

Slightly expanded version of my ECML 2006 submission ‘

obtained by running the weak learner on the training daté&ety:) ,...,(Xn, yn),
with weightsD; (n), 1 < n < N chosen to emphasize misclassified examples. The
weight update rule is:

Dt-l—l (n) — Dt (n) (q (ta +a Xn) e_at’+yn + q (ta) Xn) eat’_yn> /Zta (1)

where 7, = ZnN:1 D:(n) (¢ (t,+, Xpn) e” %4V + ¢ (t,—, X,,) e*v=-Yn) normalizes
the weights so they sum to one.

With a deterministic weak classifier, one would havet, X,,) € {-1,+1}, re-
sulting in the original Adaboost weight update rule. An diddial difference is that the
¢ (£, X,,) are unknown. We address this issue in $&8. 3.2 and assumewdhat the
we have estimates(+, X,).

3.1 Boosting property

We now give an upper bound for the expected misclassificaioor of 7 (X'), and
show how to choose the weights . This derivation parallels that dil[1]: the expected
training error is

N N
E(Losy =Y D (n) E(IH (Xy) #3]) < 3. D(n) B (71X0m) - (2)
n=1 n=1
where[.] is the “indicator function,” being 1 if the bracketed expies is true and
zero otherwise.
SinceH (X,) may take at mos2” possible values, depending on the outpuyts
1 <t < T, oftheT classifiersh; (X,), one has:

T
F (6_H(Xn)yn) — Z H(j(tast,Xn) o= s Yn
S1,..,87 t=1
T-1
= Z (j(t,st,Xn)e—at,stynM
$1,..,87_1 t=1 DT (n)
T-2
- Z ‘j(t Sty X)6_at’5tyn Dr (n) Zr_1 DT+1 (n) Zr
81,872 t=1 Y Dr_q(n) Dr (n)
= .etc. ..
Dry1 (n) T
T+1
- Z
D (n) [1%

Summing over all samples, one gets the familiar expression

T
E (Losg < H .
t=1

The rest goes as with Adaboost: edthis minimized by setting

1 Wit 1 4%
ap 4 = 510g W+_ and Qap - = 5 IOg W_+ s
t t

4

Slightly expanded version of my ECML 2006 submission ‘

whereW** =37\ _, D¢ (n)q(t,a,n), foranya € {+1,—1}, b € {+1,~1} . For

this choice ofv, 4, one hasZ, = 2¢/W, T W7~ +2/W,TW, ~, and one can show
that 7, < /1 —4¢? = p. The expected error of tHE-stage boosted probabilistic
classifier thus has the same bound as the error of Adaboost:

E (Losy < (\/1 - 452)T 2T (3)

It must be made clear that, in practice, during traininguisers only havestimates
of ¢ (¢, %, n), so that they reducan estimatef the bound of the expected error.

3.2 Estimation ofg (+, X,,) during training

In this section, we show how users can, in practice, baldmei heed for accurate
estimates of the (¢, +, n) with their eagerness to reduce the estimate on the bound of
the expected error (the reader may skip this part in a firsting.

The difference with respect to Adaboost is that, once thesdiar has been trained,
the user has to estimate th€T, +, n), in order to computédr, (n) for the next
classifier. The question is thus “how many samples©fX,,) should be taken?” The
trivial answer, which we exclude, is to fix some numberf samples and use the
corresponding MAP or ML estimates. We exclude for now thiprapch, to avoid
adding an extra paramet&r. We propose, instead, two approaches based on the MAP
estimator ofy (¢, +, n).

Let us first compare the MAP and ML estimators, to later bettgtain our prefer-
ence for the MAP. Both the MAP and ML converge in probabildythe true value, so
that the corresponding estimatorsffalso converge in probability to the true value.
The MAP and ML differ in that the MAP estimator of(7', +, n) is biased toward%,
and that of77 is biased toward$. More precisely, the expected value of these MAP
estimators converge to the their limitem aboveso that the expected value of succes-
sive estimates of 7 decreases towards the true value. Thus, after samphir(d{,,)

R times, sampling once more is always expected to decreasstimate of/r.

First approach to estimateq (7, +,n): The MAP thus has the advantage of provid-
ing a natural stopping time, that of the first observed irgeda our estimate of’p.
The event thaZy increases has a probability that increases towhf#isso that it will
almost always (in the probabilistic sense) happen afterii fiime. This strategy can
also be used with the ML estimator, but, having a greateawas, it is more likely to
result in a spuriously low estimate &fy and early stops. On these grounds, the MAP
should thus be preferred over the ML.

Second approach: An alternative method involving some look-ahead, and tiee'ss
stopwatch, may be also be considered: having until noweddinclassifiers and sam-
pled R timeshr (X,,), 1 <n < N, the user has the following options:

A Train a new classifiehry; (X), using the current estimate ¢f{T, £, n) in the
calculation of Dy 44 (n). Then sampléir;1 (X,,), 1 < n < N once, resulting
in a first MAP estimate of/7,1. As a result, the user decreases the estimated

Slightly expanded version of my ECML 2006 submission

bound, now [, ., Z, previousy [, . Z:, by the factotZr.; . Also, the user
measured, with his or her stopwatch, the elapsed Speluring training and

sampling. The instantaneous bound decrease rate per uiniBjE(ZT+1)1/SA.

B Sample once morér (X,), 1 < n < N, producing a new estimatg,.. As a
result, the user decreases (or increases) the estimated by factorz/. /7.
Again, with his or her stopwatch, (s)he measured the elafigegl Sg. The

instantaneous bound decrease ra(eZ@/ZT)l/ 58

Finally, based on the smallest bound decrease rate, thedasietes whether to keep
the new classifiebr41 (X) or the new estimat&?..
We have thus proposed two parameterless ways to estinfater, n).

4 Boosting decision tree

Having shown how Adaboost can be transposed to probabilveiak learners, we now
further extend our study to probabilistic decision trees.

Computationally, our proposed classifier is a smoothedpigkecision tree. In that
model, the outpuf? (X) is a weighed sum of the (random) classifiers on the nodes
traversed by an input elemet :

7(X)
H(X)= " oy x)hspo1,x) (X) (4)

t=

—_

where s (¢, X) is the index of the!h node reached by inpuX, A1 x)(X) €
{—1,1} is the output of the corresponding classifier andX) is the depth of the
last inner node reached by before exiting the decision tree. The weight given to
hei—1,x) (X) , as x) is domain-partitioned, since it depends on the observadeval
of hs(t—l,X) (X)

Some notation is needed: the index of a neds a sequence of” and “-",
indicating the path to that node. For example, in Big. 1,&igh= (+, +, —) is the leaf
reached by following the+" edge out of the root node, then the* edge out of the
(+) node, then the+" edge out of thg+, +) node. The output of the classifier, when
an input exits the decision tree byis thusf (X) = a4 + ayy + oyq—.

For additional convenience, we writethe index of the parent of node(s =
(4, +) in the previous example) aricthe last edge followed to reash(here,s = —).
Thus, one may write = (5, s). The root node is (0, X) = §. With this notation, and
noting that/ (X') only depends on the leaf X') reached byX, one has:

H(X)= Y as 2 H, (5)

P<s<I(X)

where the sum is taken over all nodesetween the ledfand the rooff (exclusive).

Slightly expanded version of my ECML 2006 submission

4.1 Decision trees with probabilistic nodes

Like most other decision tree-building algorithniSI[£1] , 1% add nodes one at a
time and do not modify previously added nodes. This is thetrnosimon way of
avoiding the inherent complexitfZi1 3] of building decisitvees. We do not consider a
subsequent pruning step. Unlike other decision trees,ikadn Adaboost, each node
is trained on the whole dataset.

However, we modulate the weights of the examples, not ondgdban whether
they are misclassified (as in Adaboost), but also based anpitedability of reaching
the node. After having traineld; (X) with weightsD; (n), 1 < n < N, the weights
for training the children nodest ands— are:

D; (n)

D
Dsy (n) = Z—(_:l)q (54, Xp) e~ +¥» and D,_ (n) = 7 g (s—, Xp) e~ =Y.
(6)

In this expressionz,, = ZnNles (n) q (sa, Xp)e ¥=¥n fora € {+,—1}, are
normalizing constants, angl(s+, X,,) € [0,1] is the (unknown) parameter of the
Bernoulli random variablé:; (X). Like in SecB, we use estimatggs+, X,) in
place of the true values.

4.2 Bound on the expected error

We now bound the error of the boosting tree algorithm andigpiee weightsa; and
the choice of the trained node at each step.

Using again the exponential error inequality LOES(X) ,y) < e~ #(X)v Eq. @),
the expected misclassification error for a training exanmiflds upper-bounded by

e l.|e2apr(l’X”) e, (7)

wherep (I, X) is the probability of an inpufl reaching the leaf. More generally,
assuming independence of the outputs of classifiers at ez, the probability that
X reaches a node= (s1,s2,...,s7) IS

p(s,X)=q(s1,X) q(5182,X)...-q(s1...5p,X) = Hq(r,X),

where the product is taken for all nodes between the rootand
The error bound is thus

Behoow) = % (HQ(s,Xn)) et

i leafg \s<!

= Z H(q(s,Xn)e_éo‘sy")
i leafs s<i

- ¥ O(354)
rleafm s<i M (n)

= > Dm]]%
. leafx s<l

Slightly expanded version of my ECML 2006 submission ‘

Summing over all exampleX,,, 1 < n < N and replacing in EqI2) yields the bound:

E(losy < > [I% (8)

1:leafm s<i
Like above, eaclty; is minimized by setting

1 W;s ab
as:§10g<Wj_‘5)’ where W° = Z Ds(n)q(a,n), a,be {+,—},

n|yn=>b

and- is the negation operator. For these values gfeach”; is takes the value

Zy =2\ Witwi-,

This bound can also be found, in slightly different context®ur previous workiiii4]
and in our unpublished manuscrifitif15]. In the present paperadditionally study
how this bound evolves with the size of the tree.

Expected error bound as a function of the tree size

We now describe the evolution of the bouillll (8) when the tregdsn by a greedy
bound-reducing algorithm.

As previously, we may show thef,; + Z,_ < /1 —4e? = p, owing to the
probabilistic weak learner hypothesis.

We now proceed recursively. After training and incorporgti’ nodes, the ex-
pected error bound i6' (1) = 3, |eafy 1.<: Zs. At this point, the tree ha$' + 1
leaves, so that one leéfat least has an efror not less th@r(T’) / (T'+ 1). After
training a probabilistic weak classifier lathe new error bound is

cr+1) = oM -[[z+] 2+ [] 2

s<l s<l— s<l—
= c+ [I[% | (1424 +2-)
s<l
C(T)
< e+ (D) 1)
T+p
= ™| =——].
e (71)
SinceC' (0) = 1, we have the general relation
T
t+p 1 A i
c(T) < = S F(T,p) ~ , 9

where B (T, p) is the beta function anll (p) is the Gamma function. The rightmost
term is the asymptotic approximation for largjeit is coherent with the bound of&iiL0,
Eq. 6].

This bound is interesting in more than one respect:

Slightly expanded version of my ECML 2006 submission

Bound of tree, Adaboost and matryoshka Bound for ree ofrees (T=100) Bound for tees of trees (T=10000)

Ll B(;und of tr‘ee— N
. Bound of adaboost-__|

o
© -

0 G 04\\/
s e L S

Expected error bound
[}
(%))

A P P Mve—

o i

1 10 100 1000 10000 100000 le+(
Number of weak classifiers

o - __

4@ 0 | ‘ ’
-] 010 100 100
Size of subtrees Size of subirees

Bound on expected error

Figure 2: Left: Bound of boosted decision tree (full curvigihest), Eq.lR), of proba-
bilistic Adaboost (dotted, lowest), EJl (3), and of mattyke (dashed, middle). From
top to bottom,p € {31 13111 je ¢ € {0.12,0.24,0.33,0.43,0.46}. Right:
Bound of boosted tree of simple trees, given by EAL (10).

— It appears that it cannot be very much improved, in the falhg sense: consider
a probabilistic learner with error/2 — ¢, independently of the weight® (n)
with which it is trained. This learner verifies the probadtilt weak learner hy-
pothesis. Now, for both the probabilistic Adaboost and fs@anced) decision
tree, H (X) is a binomial random variable with parametétg2 — <), and the
number of weak parameters traversed¥yThis second parameterisfor Ad-
aboost andog, (T') for the decision tree. It is clear, then, that the decisiee tr
requires exponentially more weak classifiers than the ftitibic Adaboost.

— This bound is especially bad for very weak classifiers«(1). The full curves
in Figurel®, left, plot the bound' (7', p) for p = 31/32, 7/8, 3/4, 1/2 and 1/4.
For comparison, the expected error bound of Adabgdstplotted alongside, is
much lower, especially fgr = 31/32.

— This bound calls the attention of designers of decisioasttempted to pass all
the training dataset along all branches: if the weak classsivery weak, the
number of needed weak classifiers may grow very much. Witnger classi-
fiers, the boosting tree algorithm may be more practical.

5 Matryoshka decision trees

Based on the conclusion of the previous section -that s&oadgssifiers yield better
boosted decision trees, we now address the question ofnalmjasufficiently strong

classifiers. The first step in this direction (Seclil 5.1piexplore the idea of putting
a boosted tree at each node. We will see that there is an adpeaint doing so. It will

then be natural, in Sectid@®.2, to build trees of trees et ... of weak classifiers,
that is, a matryoshka of decision trees.

5.1 Bound for a tree of trees

In this section, we study the error bounds obtainable by &iiectree built using the
method of Sectioll4, but where the nodes are themselveshudeaccording to that

Slightly expanded version of my ECML 2006 submission

same method. We place ourselves in the situation of haviagekource to train a
fixed number!" of weak classifiers, and our objective is to minimize the lmban the
expected error.

In this context, it is natural to study the bound obtainaljleabsembling/’ sub-
trees of fixed sizel; = T/T,. By Eq. @), the error bound for the sub-trees is
F(Ty,p) = (I1B (11, p))” ", and that of the outer tree is

F (Tz F (Tl,p)) . (10)
1

Figurel®, right, plots this bound plotted agaifist The curves show that, faf, = 1
andT; = T, the bound is the same &5(7', p), i.e. that of a not-nested decision tree.
More interestingly, for intermediate valuesTf, the bound of EQERO) is always lower
thanF (T, p). In particular, the minimum is always ne&r = /7.

Given these encouraging results, we are naturally temmtesdifvstitute the sub-
trees (of sizeT}) byT] sub-trees of sub-sub-trees of sizg&, for someT;, T}’ s.t.
T/T{" = T;. The same idea can also be applied to the outer tree.

5.2 Bound for a tree of trees ... of trees of weak classifiers

More generally, we are tempted to determine the bounds abéelby trees of trees of
... of trees of weak classifiers. For soth@nd1;,75,...7; st.1yT, ... T, = T, the
bound is easily shown to be:

F(Ty,F(Ty1,...F(T1,p))).

Finding analytically the optimal combination @f, 1 < ¢ < L may not be easy.
But, guided by the observation that, for= 2, the optimal choice seems to be near
Ty = Ty, = /T, we naturally consider the ca§e = 75 = ... = T;, = T/~ In this
case, the bound is

F(T%,F(T%,...F(T%,p))). (11)

The black graph in Figudl 3 plots this value against the ngdavel L, with the
original boundF (T, p) (top) for comparison. This figure clearly shows that deeper
nesting levels improve the bound. In fact, BEI(11) continteedecrease fof. >
log, 7', i.e. when the trees each have less than two nodes.

This (strange) effect is due to the fact that 7, p) is defined for any positive real
T'. Since the number of nodes is in an integer, there are noigaihiépercussions.

However, these curves clearly indicate that smaller sebstyield better bounds.
This suggests building the smallest possible trees, witttyjuo nodes, each node a tree
with two nodes, etc, until the last level, consisting of sr@éth two weak classifiers.

5.3 Bound for 2-matryoshka

We now derive the expected error bound for the “2-matryoshiee, having exactly
two nodes, at all nesting levels, having precisely two nodés thus need to assume
that7" = 2% is a power of two.

10

Slightly expanded version of my ECML 2006 submission

Bound on error of nested trees vs. nesting lev Bound on error of nested trees vs. nesting lev
T=2710 =216

1 , , , : : 1

©
T

©®
I

o o o
(2]

~
T

°o o o
o

Error bound
B

Error bound

o
[N}
T

o

i i i i i : Lo
06123 456 78 91011 0 2 4 6 8 10 12 14 16 Lt
Nesting level Nesting level

Figure 3: Black curve: bound on error of matryoshka decisiees at various levels of

nesting. The sub-tree sizes are/ (nesting level Light-colored curves near the black
curve are for trees w/ integer number of nodes. . The topniostrharks the error
bound of the (not nested) decision tree. At l&ft= 1024, and7" = 65536 at right.
These curves are for= % i.e.e ~0.12.

We call M (T, p) = F (2, F(2,...F (2, p))) the bound for this tree (there afe
nested parentheses). Recalling from &l. (9) hae, p) = p12 = Lp + 1%, one
writes M» (T, p) as a polynomial of degreE.

Figurel®, left, shows the graph &1 (7', p), in dashed lines. This figure shows that
the 2-matryoshka tree has a much stronger boosting altidty the plain boosting tree,
and this is the main result of this paper.

5.4 Building a matryoshka

The algorithm for the 2-matryoshka would thus be: train a-teaf tree (stage “b”, in
Fig.H), and collect the leaves into a single node (“c”). Mraitwo-leaf sub-tree on one
of the branches, collect its leaves in a single node (“e”)ll€€bthe leaves once more
(“f") etc. If all weak classifiers have the same edgehen this approach is the most
appropriate.

In practice, the classifiers will not have the same edge aneedyg -with respect
to number of nodes or physical training time- bound-dedngaapproach could be
considered. Each time a classifier is added to the tree, wecarlsider each sub-
tree containing that node, starting from the top. For eadhtsee, we compare the
instantaneous bound decrease¥afehe sub-tree af’,

Csimpie ~ (C(T+1) = C (T = 1)) /2, (12)

(C (T') being computed on the sub-tree only), with that of a treerfgasiich a sub-tree
at each node,

otm \T’
If the later is smaller, then the leaves of the sub-tree dieated into a single node.
We now give the detail of computing E13). Using the relatl B (z,y) =
B (z,y) (¥ (2) — ¢ (x + y)), wherey is the digamma function; (z) = 2 (log (T (z))),

4Here, we consider the decrease rate per added node, buttiease rate per unit of training time could
be used too.

C.1Mat7'y<)5>’l'Lka = QF (i C(T)) (t = T) . (13)

11

Slightly expanded version of my ECML 2006 submission

one gets

Fr(Tg) = ~F(@) (3400 -6(T+7) and
F(T,p) = —F(T,p) (@ (p) =v(T+p)).

The first line above then gives

%F (%,C(T)) (t:T):@(erw(C(T)Hﬁ—l), (14)

wherey = —¢ (1) ~ 0.5772 is Euler’s constant.
One can check that, faI' = 1, Csimpie = Caratryoshka and that, ifC' (T') =
F (T, p), i.e. if the boundlP) is tight, the@'s; npic = Caratryosaka fOrallT > 1.

6 Discussion and conclusions

We have developed in this paper a theory of probabilisticsting, aimed at decision
trees. We proposed a boosting tree algorithm and a thealtgtsuperior matryoshka
decision tree algorithm. These algorithms are essentiagigmeter-free, owing to the
principle of choosing whichever training action most regkithe expected training
error bound, and to a judicious choice of possible trainictgpas.

We showed bounds on the expected training error of the ahgos, one of them
discouraging, the other, encouraging. The bounds for gitmpes and for trees of trees
are coherent with our early experiments.

Future developments include an analysis of the effect ofa@mating the node
branching probabilitieg (s, X,,) during training and experimental evaluation of the
matryoshka.

On a more general level, we believe that the high bound fostiogtrees indicates
that the probabilistic weak learner hypothesis is inadegjughis hypothesis, directly
adapted from the theory of boosting, does not take into addbe fact that real-world
classifiers usually have a lower training error on small@ining sets. Our intuition is
thus that the entropy of the training weighf3,(n), should be taken into account in
future work.

References

[1] R. E. Schapire and Y. Singer. Improved boosting algamghusing confidence-rated pre-
dictions.Machine Learning37(3):297-336, 1999.

[2] L. Breiman. Bagging predictordvlachine Learning24(2):123-140, 1996.
[3] L. Breiman. Random forestdllachine Learning45:5-32, 2001.

[4] Z.Tu. Probabilistic boosting-tree: Learning discnmative models for classification, recog-
nition, and clustering. lproc. ICCV, 2005.

[5] P. Viola and M. Jones. Robust real-time object detectitm proc. ICCV workshop on
statistical and computational theories of visj@D01.

12

[6]

[7]
(8]

(9]
[10]

[11]
[12]
[13]

[14]

[15]

Slightly expanded version of my ECML 2006 submission

B. McCane and K. Novins. On training cascade face detectdn Image and Vision
Computing New Zealan@003.

H. Luo. Optimization design of cascaded classifierspioc. CVPR 2005.

R. L. P. Chang and T. Pavlidis. Fuzzy decision tree athars.|IEEE Trans. Systems, Man,
and Cyberneticsr(1):28-35, 1977.

J. R. Quinlan Probabilistic decision tregsn Machine Learning: An Artificial Intelligence
Approach volume 3, chapter 5, pages 140-152. Morgan Kaufmann, 1990.

M. Kearns and Y. Mansour. On the boosting ability of wman decision tree learning
algorithms.J. of Computer and Systems Scien&8¢1):109-128, 1999.

J. R. QuinlanC4.5 : Programs for machine learnindorgan Kauffann, 1993.
T. M. Mitchell. Machine LearningMcGraw-Hill, 1997.

L. Hyafil and R.L. Rivest. Constructing optimal binargasion trees is NP-complete.
Information Processing Letter§(1):15-17, 1976.

E. Grossmann. AdaTree : boosting a weak classifier irdeasion tree. IWorkshop on
Learning in Computer Vision and Pattern Recognition, CYRGOA4.

E. Grossmann. Adatree 2 : Boosting to build decisioedrer Improving Adatree with
soft splitting rules. unpublished work done at the Center\fisualisation and Virtual
Environments, University of Kentucky, 2004.

13

	Introduction-1mm
	Probabilistic weak learner-1mm
	Adaboost for probabilistic weak learners-1mm
	Boosting property-1mm
	Estimation of q(,Xn) during training-1mm

	Boosting decision tree -1mm
	Decision trees with probabilistic nodes-1mm
	Bound on the expected error-1mm

	Matryoshka decision trees-1mm
	Bound for a tree of trees-1mm
	Bound for a tree of trees ... of trees of weak classifiers-1mm
	Bound for 2-matryoshka-1mm
	Building a matryoshka-1mm

	Discussion and conclusions-1mm

