AdaTree : boosting a weak classifier into a decision tree

Etienne Grossmann*<etienne@cs.uky.edu>
Center for Visualization and Virtual Environments,
University of Kentucky
1, Quality Street, Suite 857
Lexington, KY, 40507, USA.

Abstract

We present a boosting method that results in a decision
tree rather than a fixed linear sequence of classifiers.
An equally correct statement is that we present a tree-
growing method whose performance can be analysed in
the framework of Adaboost.

We argue that Adaboost can be improved by pre-
senting the input to a sequence of weak classifiers, each
one tuned to the conditional probability determined by
the output of previous weak classifiers. As a result, the
final classifier has a tree structure, rather than being
linear, thus the name “Adatree”. One of the conse-
quences of the tree structure is that different input data
may have different processing time. Early experimen-
tation shows a reduced computation cost with respect
to Adaboost.

One of our intended applications is real-time detec-
tion, where cascades of boosted detectors have recently
become successful. The reduced computation cost of
the proposed method shows some potential for being
used directly in detection problems, without need of a
cascade.

1 Introduction

Boosting [18] refers to methods that successively train
a weak classifier to improve its performance on a train-
ing dataset. One important property is that the final
error is upper-bounded by a product of terms bounding
the errors of the weak classifiers. As a consequence, the
training error decreases exponentially with the number
of boosting rounds, as long as the weak classifier per-
forms slightly better than trivial guessing.

1.1 Connection between boosting and
tree classifiers

It has been noted [11] that decision tree growing can
be viewed as a boosting mechanism and that the train-

*This work was funded by the Kentucky Office of New Econ-
omy

AdaBoost

Run-time:
e Sequence of classifiers is fixed.

e QOutput is linear combination of a fixed set
of classifiers.

Training:
e Each weak classifier is given all training
data, with variable weights.

Unsmoothed Decision Tree

Run-time
e Qutput of current weak classifier deter-
mines choice of next classifier.
e Qutput depends only on that of last classi-
fier.
Training:
e Each weak classifier sees only the train-
ing examples that reach the corresponding
node.

AdaTree

Run-time:
e Qutput of current weak classifier deter-
mines choice of next classifier.

e Qutput is linear combination of previous
classifiers; weights increase near leaves.
Training:
e Each weak classifier sees only the train-
ing examples that reach the corresponding
node.

Table 1: Comparison of the run-time behavior and of
the usage of training examples, in Adaboost, a decision
tree and Adatree.

ing error can also be made to decrease exponentially.
However, algorithmically, boosted classifiers and de-
cision trees appear totally unrelated. The proposed
method bridges this gap, by defining a boosting algo-
rithm that results in a decision tree. An alternative
viewpoint is that we propose a tree-growing algorithm
that is amenable to the analysis methods of Adaboost,
as developed in [20].

Table 1 shows a comparison of Adaboost, decision
tree and the proposed method. In Adaboost, the input
data always follows the same path, independently of
the result of previous classification. In contrast, in a
decision tree, the input is presented to classifiers that
are adapted to the conditional probability determined
by the result of the previous test. This “good” property
is preserved in Adatree.

In an unsmoothed decision tree, the final decision
belongs to the last classifier, independently of the out-
put of the previous classifiers. In Adaboost, it is possi-
ble to use confidence-rated weak classifiers that return
a real number and the final output is a linear combi-
nation of the output of all the classifiers. This “voting”
property of boosting is preserved in Adatree.

It is well-known that decision trees are prone to over-
fitting [16, Ch. 3.7], whereas Adaboost appears less
subject to it [19], at least if the space of weak learners is
sufficiently “small”. Because, in Adatree, each classifier
is presented with a subset of the training data, one can
expect that the proposed method suffers from the same
over-fitting problem as decision trees. We will see in
Section 3 that this is the case to a limited extent when
the input data has a moderate amount of noise.

As noted by an anonymous reviewer, Adatree is sim-
ilar to a “smoothed” [2, 3] or “shrinked” [2, cited by
[5]] decision tree in which the final decision is a com-
bination of the output at inner node of the tree. The
combination can be obtained using e.g. statistical [3]or
empirical [5] arguments. Due to time constraints, we
do not provide here comparison with these methods
and focus on our comparison with Adaboost.

1.2 Boosting in real-time detection

problems

Adaboost has been used in systems that solve hard
classification problems such as face detection [21, 12,
13].

Viola and Jones [21] showed a reasonably good face
detector obtained by boosting a thousand times a weak
classifier. Because the computation time of the boosted
classifier is proportional to the number of boosting
rounds and because the intended application was real-
time detection, the resulting computation cost was con-

sidered prohibitive. To improve the situation, [21] pro-
pose to use a cascade of boosted classifiers rather than
a single huge boosted classifier.

This approach presents some advantages : the re-
sulting system discards negative inputs as evidence
gathers that they are not positives, rather than com-
puting all classifiers before taking a decision. As a re-
sult, the average computation cost is much smaller.
Moreover, each boosted classifier in the cascade is
trained in accordance to the proportion of positive and
negatives it will meet and may be tuned for this situa-
tion.

The association of a cascade architecture and of
boosted classifier thus allows good detection perfor-
mance while keeping computation cost low. This ex-
plains the success of this approach, which has gener-
ated many variants [12, 13] and has inspired related
work [4, 6].

We argue that the cascade architecture -a special
case of a decision tree- is not necessarily optimal. In-
deed all positives must be considered as such at each
level of the cascade. Each level must thus have very
low false negative rates for the system to be successful.
In contrast, in a general decision tree, each node can
produce a split with high error rates, as further splits
will improve the estimate. What is important is that
each split increases the information content [11, 16].

Moreover, in a cascade, the characteristics of the
boosted classifiers at each level have to be set “by
hand”. Despite some recent research to set these char-
acteristics automatically [14, 9], the issue remains. In
contrast, Adatree is a single system which can be
trained and studied with the same ease as a single
boosted classifier.

1.3 AdaTree

Algorithm 1 describes the proposed method. Many
versions of boosting exist. The study that we propose
here follows the lines of the most studied Adaboost
algorithm [8, 20]. The main difference in our notation
is that weak classifiers cannot be indexed simply by
their depth. We represent each node s by a sequence
of '+’ and '—’ corresponding to the signs of the output
of the weak classifiers that lead to this node. The root
node is written s = (). The second node, assuming
the first weak classifier hy (X) has positive output is
s = +. The third node, assuming a positive outcome
of the second weak classifier hy (X), is s = ++. Etc.
The following section studies the properties of Ada-
tree. Section 3 compares experimentally the behavior
of Adatree and Adaboost. Finally, Section 4 presents
some conclusions and directions of ongoing work.

Algorithm 1 AdaTree

Input Training examples (X1,v1),...,(XN,YN),
original weights Dy (1),..., Dy (IN), target error
rate and a family of weak classifiers.

Initialization Initialize the set of leaves to {(}.

While error above target

e Choose the leaf s with maximum error.

e Train a weak learner hg (X) using the p.d.f D (n)
on the training set.

e Choose a4 and a,_.

e Define
Dy (n) = Dg(n)e ¥nosth:(Xn) 7z
ith (X,,) > 0, 0 otherwise,
Ds_(n) = Dg(n)e vnos=haXn)z

if hs (X,) <0, Ootherwise,

where Z,1 normalizes the D, (n) so that they
sum up to one.

e Split the leaf s into s+ and s—.
Final classifier
Define
T(X)
h(X)= > a(t,X)h(tX),
t=1

where a (t7X) = Os(t+1,X) > h (t7X) = hs(t7X) (X) and
the s (t, X) are defined recursively by

s(1,X) = 0
st+1,X) = s(t,X)+ ifhs(t,X)(X)>0,
S (LX) - ifhs(t,x) (X) <0,

undefined if hy; x)does not exist.

T (X) is the largest number for which s (¢t +1,X) is
defined.

2 Properties of AdaTree

We now show that Adatree has properties similar to
that of Adaboost. In particular, we show that the
training error can be bounded in the framework of [20].

2.1 Bounds on the loss

We first bound the loss of h (X) on the training data.
The notation is abbreviated to improve readability : a

sum over all indices n such that h (X,) >0and y, =1
isnoted)., —;- Also, T'(X,,) is shortened to T (n),
s(t, X,) to s (t,n) and so on.

L(h)

> Dy(n)

h<0,y,=1

Z Dy (n) +

h>0,yp=—1

N
S Dy (%)
n=1

IN

N T(n)
= Z D@ (n) H efyna(tﬂl)h(t,n)
n=1 t=1
T(n) D

N
= > Dy(n) []

t=1

s(t+1,n) (n) Zs(t+1,n)
Ds(tm) (n)

N T(n)
= ZDT(n) (n) H Zg(t+1,n)
n=1 t=1

> 11 - (1)

sleaf s'<s

The second line results from a simple majoration.
The fourth line is the consequence of the definition of
Di(t+1,n) (n). The last equality, where s’ < s indicates
s and all its parent nodes s’, results from reordering
the sum over the examples into a sum over the leaves

N T(n)
> Driy) [Zstrsrm
n=1 t=1

T(n)
= Z Z DT(") (n) H Zs(t+1,n)
t=1

sleaf nreachess

1,by construction

2.2 Choice of parameters

We now show how to determine the optimal parameters
as+ in the general case of real-valued weak classifiers
and in the cases of classifiers limited to [—1,1] and
{-1,1}.

Given the bound in Eq. (1), we are justified to min-
imize the loss by greedily minimizing each term Zi
of the product with respect to a4 and a;_. One first
notes that Z,, (resp. Z;_) does not depend on a;_
(resp. a4). Writing Z as

Zsy = D (n) e~ ha(Xn)oayt

2 >0
UYn =1
+2 hso
Ynp = —1

Dy (n) ehs(Xn)ass,

it is clear that there is a unique minimum, provided
that there is at least one term y,, = —1 and one term
yn = 1 with non-zero weight D (n) : in that case, Zs
tends to +oo when o, tends to oo and is a sum of
monotonous convex terms. The derivative of Z,; with
respect to a4 is

0 —hs(Xn)as
EZS_’_ = — Z DS (n) hs (Xn)e h s+
h>0
Yn = 1
b Dl () e
h>0
Yn = -1

which has a unique zero. For the general case of real-
valued weak classifiers, the unique zero can be found
numerically. If the weak classifier is bounded, an an-
alytic approach can be taken: following [20, 1], we as-
sume that hg (X) € [—1,1]. The majoration

1— 1
ac€[-1,1]=e? < 5 Teb 4 ;aeb
yields the bound
Zs+ S
Zh>0 D, (n) (1+yn};s(Xn)e—Ozs+ + 1—ynf;s(Xn)ea5+

(2)
This time, it is easy to see that the majorant is mini-
mized by

o2t — Zh>0 Dy (n) (14 ynhs (Xn))
2onso Ds (1) (1 = ynhs (Xn))
rt
- = ®)

where r]” = (Zh>0 D (n) ynhs (Xn)) / (Zh>0 Dy (n))
In the more specific, but common, case that
hs (X) € {—1,1}, Zs4 is simply minimized by

++
s = S 0
where WiFT = 57, , _ Ds(n) and Wi~ =

Zh>0,yn:71 Dy (n).
Minimizing and bounding Z;_ similarly yields the
choices

Q20— Ehgo Dy (n) (1 +ynhs (Xn))
Zhgo DS (n) (]- - ynhs (Xn))
1+r;

= — (5)

1—1r;

where r; = (Zhgo Ds (TL) ynhs (Xn)) / (Zhgo Ds (n)) .
If hs (X) € {—1,1}, Z,_ is minimized for

N

e = o (6)
where W= = 37, _ Ds(n) and W7~ =

2on<0,yn=—1 Ds ().
For a4, given in Egs. (3,5), the bound for Z,y is

Eq. (2) is :

Zox < 1— (r¥)%

> Ds(n)

>
h<0
In the case of hs (X) € {—1,1}, Egs. (4,6) yield :

Zox = 2V WETWE

Notice that our choice of a,+ coincides with that
of Aslam in InfoBoost [1] and to one of the weighing
schemes proposed in [20].

We are currently progressing towards a useful com-
parison of Eq. (1) and the bounds obtained in [20].

2.3 Considerations about special cases

Particular attention should be given when the weak
classifier takes only one value on all examples to which
it is presented, or when it has no false positives or no
false negatives or no true positives or no true negatives.
When this occurs, Z;+ is minimized for a4+ at infinity.
Although these cases can be considered as marginal
in Adaboost, they are common in Adatree, where the
number of training samples dwindles as one moves up
the tree.

First, 1 (resp. r;) is not defined if ks (X,,) is non-
positive (resp. negative) for all n s.t. Dgs(n) > 0.
In that case, the decision tree cannot grow a branch
s+ (resp. s—) from lack of examples and the quality
of the weak classifier, when it returns a positive value
cannot be assessed from the training data. When this
happen, we define a,y = 1 if s is the root node and
as+ = 0 otherwise. In the former case, if hg (X) <0,
then X will be classified as negative. In the latter case,
a negative value of i, (X) will be discarded and the X
will be classified only based on the parent nodes of s.

Second, r} is 1 (resp. —1) when the weak classifier,
when it is positive, is equal (resp. opposite) to ¥, .
In this case, a4 is +0o (resp. —o0), i.e. the weak

IThat is, when one has : Ds(n) > Oandhs (X,) > 0 =
yn = 1 (resp. Ds(n) > 0and hs (Xy) > 0 = y, = —1). In this
paragraph, we only consider rJ ; it is clear that r; should be
treated likewise.

Positive (stars) and negative (circles) examples

5 T T T T T T

4 4
3 3
2 2
o0 o g¥u 0 G0 o e ¢
g
AR w 1 00 fho % 00 o B
o 0 0 ® 0 o @0 9 o, 0 @ o0
o w0, e Mol 3 0 o o o0
op * e .8 o 0 a 3 88 0
oe s N N A of [N o%o
L @070 b e . *0 £ 0o ¢ * o
4 20 ,,&,H . e [X ¢ A
m rx‘,?xxl” e., (* o“’ 2 o X oo @ ¥ : A
2 b é! o i Bty 09?* Py LY
o ’§ °°°e° b -3 ‘f&ﬁ‘wo g 00
,3000 ;3 b & o ego . 00 . &
o
-4

-5 -4 -3 -2 -1 0 1 2 3 4 5

Dataset with 1% noise added Dataset with 10% noise added

Figure 1: Example datasets, left with 1% noise and
right with 10% noise.

classifier will be weighed infinitely more than its parent
nodes. Since the error at s is zero, this node will not
be further grown and the final classification of any X
that reaches s and has h, (X) > 0 will be positive. In
order to avoid over-weighing these leaf classifiers, it is
possible, following Schapire and Singer [20, Sec. 4.2],
to add a small “smoothing” term to the terms WF+.

3 Experimental results

This section presents some experimental results, in a
simple 2D classification and a face detection problem.

3.1 2D classification

We now show how Adatree performs in relation to the
Adaboost algorithm of [20], in the case of hs (X) €
[-1,1]. We consider datasets as shown in Figure (1),
where, in the absence of noise, positive examples are in
one of four circles and negative examples are in the sur-
rounding space. Independently, identically distributed
Gaussian noise at a level of 40dB (1%) or 20dB (10%)
is added to these, so that the separation of positive
and negative regions becomes more complicated and,
more importantly, so that the true distributions be not
exactly separable. The datasets consist in 400 points.

The weak classifier is a 2D linear classifier composed
with a sigmoid so that it ranges in [—1,1]. Adaboost
[20] and Adatree were trained on the same data until
the error level reached 0.001. Following [20], a smooth-
ing term of 0.01 was added to the top and bottom terms
of Egs. (3,5) for computing the weights of Adatree.

Training Adaboost required 80 (resp. 377) boosting
steps on the 1% (resp. 10%) noise datasets. Training
Adatree required 28 (resp. 51) steps, resulting in a tree
of depth 8 (resp. 10).

Error decrease during training Error decrease during training
0.50 T T T T T T T T 05 T T T T T T T

0.40 AdaTree— 04 AdaTree—

Error

000 L L ey o L L I 0 + L
0 10 20 30 40 50 60 70 8 90 90 o s 00 15 200 250 300 30 400

Training rounds Training rounds

Figure 2: Error decrease during training. Left: with
1% noise in the data. Right: with 10% noise in the
data.

Figure 2 shows the evolution of the error during
training. This figure shows that Adatree decreases the
training error much faster than Adaboost.

The main performance test is of course that on the
validation data. As can be expected by the nature of
Adatree, its generalisation error is less good than that
of Adaboost. Figure 3 shows the error on a validation
dataset obtained in the same conditions as the training
sets, for increasing numbers of training rounds. On the
right, with 10% noise in the input, one clearly sees the
effect of over-fitting in Adatree, which manifests itself
as the joint increase of the error and of the number of
training rounds. This effect is much smaller with 1%
noise. In that case, while remaining inferior, Adatree
compares better with Adaboost.

The bottom curves of Figure 3 plot the error against
the mean computation cost. These curves are param-
eterized by the number of training rounds. In the case
of Adaboost, the computation cost coincides with the
number of training rounds, while it corresponds to the
mean depth reached by input given to the Adatree clas-
sifier. These curves show dramatically the computation
cost decrease incurred by Adatree and suggests that it
has a big potential for real-time applications.

3.2 Face detection

In this section, we present experiments with face classi-
fiers based on Haar filters combined with Adaboost and
Adatree. Figure 4 (left) shows the five types of filters
used. The weak classifiers are computed by threshold-
ing the output of one such filter. By setting constraints
on the minimum and maximum dimensions, surface
and ratio of height to width of the filters, the number
of possible filters is reduced to 286, much less than the
tens of thousands of [21]. The training dataset consists
in 1500 face and as many non-face images. The faces
are taken from the BioID database [10], from dataset C

Error on validation data

10% Noise in data
O.SOW T T T T T T T T T

1% Noise in data

0.50

B —
AdaTree — -
0.40 1 040
030 B 030
020 B 020 h\\\\/ﬁ

010 1 010

AdaTree —

Error

P R SR R
Oo 10 20 30 40 50 60 70 80 90 o w om w o w @ m wm w
Number of training rounds Number of training rounds

0.50

AdaTree — | o AdaTree —

0.40

0.30

0.20
0.10

0

Error

P S
0 10 20 30 40 50 60 70 8 90
Mean computation cost

o W ®» ® e ® @ o @ w W

Mean computation cost

Figure 3: Top: Error on validation data vs. number of
training rounds. Bottom: Error on validation data vs.
mean number of weak classifiers used by the classifier.
Left: with 1% noise in input. Right: with 10% noise.

of the CMU database [17] and from images gathered on
the internet. The nonfaces are cropped from the We-
ber “s Caltech background dataset [22] and false posi-
tives obtained during previous classifier development.
All face and non-face images are scaled to 18-by-31 pix-
els and normalized in variance and range. Images from
the BioID database are cropped repeatedly at slightly
different positions and scales. A validation dataset of
3000 different images is built in the same way.

The reference boosted classifier is built using 50
boosting rounds of the method of Schapire and
Singer [20, Sec. 4.1] (equivalent to [1]), where the weak
classifier is chosen according to the criterion of Kearns
and Mansour [11] 2V W ++W+= +2v/W—+W—-. This
reference classifier was also transformed into a cascade
of 15 classifiers using the technique of [9], so as to re-
duce the average computation cost. A third reference
classifier is defined by truncating the boosted classi-
fier (retaining only the first few weak classifiers - 7 will
be kept) so that its computation cost matches that of
Adatree. Performance of the Adatree classifiers will be
compared below to these three reference classifiers.

Two Adatree classifiers are built from the same weak
classifiers using the same criterion. The first follows ex-
actly the procedure described above, the second differs
only by never splitting a leaf that has been reached
by less than 5 examples. A smoothing factor of 1/N

L=

AdaBoost - -

o7l Cascade
I | AdaTree —
06 AdaTree
a 05 AdaBoost

Figure 4: Left: Haar filters used in face detection.
Right: ROC of Adaboost (thick dashed; cost=>50),
cascade (nearly superposed light dashed; cost=19)
Adatree (plain thick curve; cost=6) and Adatree with
a minimum of five examples at each leaf (nearly super-
posed light dotted curve; cost=7). And that of Ad-
aboost (light dotted; cost=7), with a computation cost
equivalent to that of Adatree.

is used in the computation of weights. The resulting
classifiers have 82 and 80 classifiers, respectively and
depths 10 and 11, respectively.

The average number of weak classifiers evaluated by
Adatree is 6.2 and 6.6 for the first and second classi-
fiers and is 50 for Adaboost. The cascade of classifiers,
whose ROC nearly coincides with that of Adaboost,
has a mean computation cost of 19. The third refer-
ence classifier uses 7 weak classifiers.

Figure 4 (right) shows that ROC of Adaboost and
of the cascade are well above that of the Adatree vari-
ants, which themselves are well above that of a boosted
classifier with computational cost equivalent to that of
Adatree.

4 Conclusions and ongoing work

We have presented a boosting method that bridges a
gap between decision tree and boosting methods. This
study was centered around the basic Adaboost [20], but
it seems that results concerning variants of Adaboost,
e.g. those that address the question of variable error
costs [7, 15], are tractable to Adatree.

Experimentation showed that Adatree has a reduced
training cost and a very much reduced computation
cost with respect to Adaboost. When the input data
has little noise, the error rates of Adatree and Adaboost
are comparable.

The fact that Adatree presents a much reduced com-
putation cost with respect to Adaboost makes it a
strong candidate for real-time applications where cas-
cades of detectors have been used to reduce the com-

putation load [21, 4, 13, 12]. If further testing confirms
the trends shown above, Adatree -possibly adapted to
avoid the over-fitting problem- could be used directly
in real-time detectors. Because this would dispense of
building a cascade of classifiers, the study of the whole
system would be much simplified in comparison to that
of cascaded systems.

However, using Adatree would only be practical if
the problem of overfitting is solved. Indeed Adatree
shows an increased generalization error with respect to
Adaboost. We are addressing this issue in our present
work. Rather than resorting to pruning or smoothing
method, we are looking at better schemes to weigh the
examples during the training that allow to stay within
the framework of Adaboost and perhaps keep its good
property of moderately over-fitting.

References

[1] J. A. Aslam. Improving algorithms for boosting.
In Annual Conf. on Computational Learning The-
ory, pages 200-207. Morgan Kaufmann, San Fran-
cisco, 2000.

[2] L. R. Bahl, P. F. Brown, P. V. deSouza, and
R. L Mercer. A tree-based statistical language
model for natural language speech recognition.
IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 37(7):1001-1008, 1989.

[3] W. Buntine. Learning classification trees. Statis-
tics and Computing, 2(63-73), 1992.

[4] O. Carmichael and M. Hebert. Object recognition
by a cascade of edge probes. In BMVC, pages
103-112, 2002.

[5] J. M. Chambers and T. J. Hastie. Statistical mod-
els in S. Chapman & Hall, 1993.

[6] D. Cristinacce and T. Cootes. Facial feature de-
tection using adaboost with shape constraints. In
BMVC, volume 1, pages 231-240, 2003.

[7] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan.
AdaCost: misclassification cost-sensitive boosting.
In Intl. Conf. on Machine Learning, pages 97-105,
1999.

[8] Y. Freund and R. E. Schapire. Experiments with
a new boosting algorithm. In proc. International
Conference on Machine Learning, pages 148-156,
1996.

[9] E. Grossmann. Automatic design of cascaded clas-
sifiers. In Statistical Pattern Recognition Work-
shop, ICPR, 2004.

[10] O. Jesorsky, K. J. Kirchberg, and R. W.
Frischholz. Robust face detection using the haus-
dorff distance. In Proc. Intl. Conf. on Audio-
and Video-based Biometric Person Authentica-
tion, pages 90-95, 2001.

[11] M. Kearns and Y. Mansour. On the boosting abil-
ity of top-down decision tree learning algorithms.
In ACM Symp. on the Th. of Computing, pages
459-468, 1996.

[12] S. Li, Z. Zhang, L. Zhu, H.-Y. Shum, and
H. Zhang. Floatboost learning for classification.
In NIPS, 2003.

[13] R. Lienhart, A. Kuranov, and V. Pisarevsky. Em-
pirical analysis of detection cascades of boosted
classifiers for rapid object detection. In DAGM
Pattern Recognition Symposium, 2003.

[14] B. McCane and K. Novins. On training cascade
face detectors. In Image and Vision Computing
New Zealand, 2003.

[15] S. Merler, C. Furlanello, B. Larcher, and
A. Sboner. Automatic model selection in cost-
sensitive boosting. Information Fusion, 4(1):3-10,
2003.

[16] T. M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[17] H. Rowley, S. Baluja, and T. Kanade. Rotation in-
variant neural network-based face detection. Tech-
nical Report CMU-CS-97-201, CMU, 1997.

[18] R. E. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197-227, 1990.

[19] R. E. Schapire, Y. Freund, P. Bartlett, and W. S.
Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. In ICML,
1997.

[20] R. E. Schapire and Y. Singer. Improved boost-
ing algorithms using confidence-rated predictions.
Machine Learning, 37(3):297-336, 1999.

[21] P. Viola and M. Jones. Robust real-time object
detection. In Proc. ICCV workshop on statistical
and computational theories of vision, 2001.

[22] M. Weber. Background image dataset.
www.vision.caltech.edu/html-files /archive.html.

