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Abstract

We extend the framework of Adaboost so that it builds a smexbtleci-
sion tree rather than a neural network. The proposed metAddiree

2", is derived from the assumption of a probabilistic obsg¢ion model.
It avoids the problem of over-fitting that appears in otheetgrowing
methods by reweighing the training examples, rather théittisg the

training dataset at each node. It differs from Adaboost keritg the
input data towards weak classifiers that are “tuned” to theditmnal

probability determined by the output of previously evatuhtlassifiers.
As a consequence, Adatree 2 enjoys a lower computation leastAd-

aboost. After defining this method, we present some earlgrxgntal
results and identify some issues left open for future retear

1 Boosting and decision trees

Boosting [1, 2] refers to methods to build weighed combinagiof “weak classifiers”. At
each training round, a weak classifier is added to the egistiimbination. These meth-
ods reduce the classification error on a training dataseabeetric rate and have been
shown to have good properties [3]. They are known to ofterometfit and generalize well
even when training is continued way beyond perfect clasdifin of the training dataset.
However, the computation cost of a boosted classifier imer®hlnearly with the number of
training rounds, so that, in computation-sensitive situest, some adaptations [4, 5, 6, 7, 8]
are done to benefit from the good properties of boosting aesoreable computation cost.

It has been noted [9] that decision tree-growing can alsoid&ad as a boosting mecha-
nism, in the sense that the training error can be made to aseigeometrically. However,
decision trees are notorious for over-fitting [10, Ch. 3.17d &ree “pruning”, “shrinking”

[11, cited by [12]] and “smoothing” [11, 13] are techniquevdloped to address this prob-
lem. Even then, over-fitting remains and decision trees baea combined by boosting to

improve the generalization ability.

The over-fitting of decision trees can be attributed to th¢ laat each node is determined
by only the examples that reach it during training. Consatiyedeeper nodes are built
from dwindling training sets that are less and less reptasiea of the general population.

*This is a very slightly modified version of an article subemitto NIPS 2004.



Table 1: Training and classification processes, of Adahoesision trees and Adatree 2.

| | Classification | Training |

o All classifiers are evaluated, e Each classifier is trained

Adaboost | e Output is linear combination ~ With all examples, appropri
of all classifiers. ately weighed.

e Only weak classifiers on
path of input are evaluated.

e Output is linear combination
of evaluated classifiers.

e Each classifier is trained
with all examples, approprit
ately weighed.

Adatree 2

e Only weak classifiers on
path of input are evaluated.
Decision | e Output is that of last classit
Tree fier or (smoothed trees) a lin
ear combination of evaluate
classifiers.

e Each classifier is trained
with the fraction of examples
that reachesiit.

o

The proposed method, “Adatree 2" differs in that respectithimishing the training weight
of examples rather than discarding them altogether.

This re-weighing scheme is derived by assuming a prob#bilidservation model that
will be introduced in Section 3. Given the observation mpee derive Adatree 2 by
minimizing the expected classification error on the tragdataset, in a similar manner to
the minimization of the classification error in Adaboost.

In Section 4, we will show that different assumptions on thsesvation model yield vari-
ants of Adatree 2 that are equivalent to Adaboost or to owigus method [14], which we
shall call “Adatree 1” in the sequel. Table 1 compares thiaitng and classification stages
of Adaboost, decision trees and Adatree 2. This sectionsifges the main problem that
we leave open for future study, namely the choice of an olbsiervmodel.

Section 5 presents some preliminary experimental reshditsstuggest that Adatree 2 has
a practical potential : its generalization ability appezssl good than that of Adaboost
while improving over Adatree 1. Also, Adatree 2 improves rofelaboost in terms of
computation cost. Finally, some concluding notes are gieSection 6.

2 Classifier model

We consider classifiers which are weighed sums of weak @issi; () :

T(X)
H (X> = Sgn Z as(t,X)hs(t,X) (X) ) (1)
t=1

whereh,; xy (X) € {—1,1} ands (¢, X) is the index of the! nodes reached in the
decision tree by inpuk’. For example, the root node i1, X) = 0, s (2, X) = (+) if
hg (X) = +1,5(3,X) = (+, —) if furthermoreh (X) = —1 etc. The weights,, x)
are set during training, as detailed in Section 4.



Algorithm 1 Adatree 2

Input Training example$Xy,y1), ..., (Xn,yn), original weightsDy (1) ,..., Dg (N),
target error rate and a family of weak classifiers.

Initialization Initialize the set of leaves t{}}.
While stopping condition not met
1. Choose a le&d.
2. Train a weak learnér; (X) using the p.d.D; (n) on the training set.
3. Foreach descendantlea€ {(s,+), (5, —)} choose weights,; and probabilities

Q(Svn) = P{h§ (On (W)) =5 | Yn, hs (Xn)v Oy (w) reaches‘},

wheres is the last elemenhgad) of s and may bet or —.
4. Define sample weights at each descendantleaf

Ds(n) = Ds(n)q(s,n)e /7,
whereZ, normalizes theD, (n) so that they sum up to one.
5. Split the old leak into the new leave&s, +) and(s, —).
Final classifier
Define

T(X)
h(X)= > a(t,X)h(tX),
t=1
wherea (t, X') = agq41,x) » b (1, X) = hse,x) (X) and thes (¢, X) are defined recur-
sively by

s(1,X) = 0
s(t+1,X) (s (t, X),San(hs,x) (X)) if hy,x) is defined.
unde fined otherwise.

T (X) is the largest number for which(¢ + 1, X) is defined.

Note thatH (X) only depends on the leaf that is reachedylf [ is that leaf,

H(X)_Sgn< 3 ass') 2\,

D<s<l

where the sum is taken over all nodesetween the ledf(inclusive) and the rodt (exclu-
sive). Throughout this paper, we will calle {—1, 1} the last elementhgad) of a nodes
ands all its previous elementsdil). Thus, one writes = (s, §).

The computational model in Eq. (1) can represent that of awysibn tree : a smoothed
decision tree [13] will have non-zero coefficieatsfor non-leaf nodes, while a classical
decision tree such as ID3 or C.45 [15] will hawe # 0 only if s is a leaf.

This computational model also encompasses the boostingthlgs : in e.g. Adaboost [2],
all classifiersh, () at a given tree depth are equal, with weightsbeing either all equal
[2, Sec 3] or depending only on whetheis a left- or a right- child [2, Sec. 4][16].
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Figure 1: Left: Probabilistic observation modeRight: Possible choices of (s,n) =
P{h(Op (w) =hs(X,) | ...)} asafunction oV = V; (hs (X,,),yn)- See Sec. 4.1.

3 Probabilistic learning model

With similar intentions as in Logistic Regression [17, 3fldioosting with prior knowledge
[18], we assume a probabilistic observation model. Coityraar [18], we do not consider
that the clasg,, of an inputX, is stochastic, but instead that, is the observation of

a random variabl®,, (w) defined on a probability spag€, O, P) (Figure 1, left). The
random variable®),, are themselves assumed to be i.i.d. samples from the clags th
represent. We will be considering with particular attenttbe conditional probabilities
thath (O,, (w)) takes a particular value, i.e.

P{h(On (w)) =h(Xn) | yn, h(Xn)}
for probabilities conditioned on the clags and on the observed value bf X,,) (which
may thus differ fromh (O,, (w))).

How this probability is estimated is important because tedaines the behavior of the
learning algorithm (see Algorithm 1). Moreover, one is &té¢o estimate it as one wants,
by adopting different assumptions and we will discuss irmtiet section the consequences
of various possible choices.

Given a probabilistic observation model, the natural goaird) training is to minimize the
expected classification error of an observation:

E (Loss(H (X),y)) ~ 3 Dy (n) E (LosS(H (O, (w)) ,ya)) 2

L, )

whereF () is the expectation operatab)y (n) is the probability of an observation being
drawn fromO,, (w)* and Los{H (X) ,y) isoneif H (X) # y and zero otherwise - we will
write Loss(H (X),y) = [H (X) # y], where[.] is the indicator function of a predicate.
Given the nature of (), Eq. (2) can be written

L=3 Dy(n) Y p(L,0n () [H # yul, (3)
n tleaf

wherep (1, 0,, (w)) is the probability that the inpub,, (w) reaches the leaf Pushing
realism slightly aside, we adopt a practical approach asdms that

PO () =[] 4a(s,m) 4)
D<s<l
where the product is over all non-root nodeat or below! and
q(s,n) = P{hs (On (w)) = $ | yn, hs (Xn), On (w) reaches}
Dy (n) = 1/N ifthe O, arei.i.d..




is the ‘transition” probability thaths (O,, (w)) = 3, knowingy,,, hs (X,,) and thatD,, (w)
reaches the node “O,, (w) reaches” is the event defined by the predicates.t.0 < u <
8, ha (Oy, (w)) = u. What Eqg. (4) -the independence of the successive weakif@ass
lacks in theoretical justification is regained in convegien

This assumption allows to bring in the framework of boostiag developed in [19], to
bound the expected loss

L = Z D@ (TL) Z p (la Oy, (W)) e (Zw<sgz 70‘55)yn
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Given this bound, one is justified to choose the valuexpfthat minimize Z, during
training, so as to greedily decreage SinceZ, = ), Ds(n)q(s,n)e *¥~ itis
easy to see that the optimal is e?* = A,/B,, whereA, = > yn=s Ds (n)q(s,n),

B, = Zyn:_s. D;(n)q(s,n) andzyn:é is the sum over all indices s.t. y,, = s. At the
optimum,Z, = 2v/A,B;.

4 Design choices in Adatree 2

In this section, we discuss the choices that remain to be pmaaeely that of a probability
model forg (s, n) and of a splitting node in step 1 of Algorithm 1.

4.1 Choice of the transition probability ¢ (s, n)

We now consider the consequences of possible choicgésof:). First note that, for each
5, q((3,+),m) andq ((5,4),n) need only be defined for some, n such thaty,, = 1
andy, = —1. This is because ((5,—),m) andq ((3,—),n) are given by the relation
q((5,4),n)+q((5,—),n) =1andallg ((5,+),m’) are equal to eithey ((5, —) ,m) or

q ((57 _) 7”)'

4.1.1 Constantnon-deterministic (Adaboost)

A simple choice isq (s, n) 2 1/2, results in the same training weights on both child
branches branches of any nodeThat is, one ha®); ;) (n) = D5 — (n) forall 5. As a
consequence, the same weak classifier will be trained ondbdtiren nodes f(5 4 () =
h(s,— (). Furthermore, assuming a balanced decision tree of degthe classifier (X)

A

is equal to a boosted classifiér(X) 2 Sgn(ZtT:1 ahy (X)), wherea; 2 ay, g =
A A
a++,...andh1 () :h@(), hg():h+(),

4.1.2 Constant deterministic (Adatree 1)

Another simple choice ig (s, n) 2 [$ = hs (X)), 1.e.Vw € Q, hs (O, (w)) = hs (X)),
which corresponds to a deterministic observation modelaAssult, the training weight



Ds, (n) (resp.Ds_ (n)) of all examplesX,, such thati; (X,,) = —1 (resp.hs (X,,) = 1)

is zero. This is thus equivalent to splitting the training aeeach node, as in typical
decision tree growing methods. The consequences of thiselassociated with a greedy
cost minimization strategy, were explored in our previowsk\14] where it was shown
that it results in overfitting.

4.1.3 Uniform

Another natural choice is to sef(s, n) to the proportion of training examples that verify

N 5 = s =3

Note thaty (s, n) only depends otil; (X,,) through a single term in the numerator.

Although this choice may at first seem compelling, it impliggat Ds(n) =
Ds(n) /32, =, Ds (m), which doeshot increase the weight of misclassified examples.
Running Adatree 2 with this choice ¢f(s, n) does not result in a decrease of the classifi-
cation error on the training data.

4.1.4 Non-trivial transition probabilities

We are thus compelled to find transition probabilities thaicdthe excesses of the choices
proposed above. In this paper, we use a functi¢s n) that depend ork; (X,,) and
Vs ($,yn) (EQ. (5)). The probability thalt; (O,, (w)) = hs (X,,) is assumed to be :

a((5,hs (%)) = 5 (14 V¥ (s () ) ©)

This choice (Figure 1, right) ensures that(O,, (w)) = hs (X,,) is always more likely
than the contrary, so that the path in the tree followed byxamgple during training is
always the most likely path for this example. While Eq. (6rss adequate, the search for
functionsg (s, n), preferably that can be shown to yield boosting algoritmesiains open.

4.2 Choice of a splitting criterion

In this section, we discuss the criterion used to select duer at which a split in the
decision tree should be done. In the decision tree litegaftirs generally admitted that it
is preferable to split according to an entropy gain measl@gdr according to Kearns and
Mansour’s [9] criterion, rather than according to a classifon-cost decrease criterion.
Because, in the present work, (a bound on) the expectedfaten is minimized, a
natural question is whether it is best to split a leaf to mirerthe expected value of the
criterion or its observed value.

One should note that minimizing the observed criterion &siigle only until its value has
reached its minimum, e.g. zero error. One is thus in the usiiation of classification
trees in which no training is possible once the data is p#yfetassified. On the other
hand, minimizing the expected criterion does not necdgstecrease the actual (empirical)
classification error.

In the present work, we split the node with the highest exgketror (zero look-ahead). An
alternative could have been to split whichever node yidldgtreatest decrease in expected
error (one look-ahead).
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Figure 2: Top-Left: Example datasetTop-Right: Error during training.Bottom-L eft:
Error vs. number of training round&ottom-Right: Error vs. computation cost.

5 Experimental results

This section compares experimentally Adatree 2 with Adabfy Sec. 4] and Adatree 1
[14], using a 2D classification problem.

We consider datasets as shown in Figure 2 (top-left), wheséipe (resp. negative) exam-
ples are uniformly distributed in one of nine circles (respthe remaining space). Each
class has 200 points.

The class of weak classifiers is the set of signs of 2D affinetfans. Adatree 1 is trained

until the classification error is zero (it cannot be trainedHer), while Adaboost and Ada-

tree 2 are trained for 400 rounds. All weak classifiers arectet! according to Kearns and
Mansour’s criterion [9].

Figure 2 (top-right) shows that Adatree 2 decreases the éuaning training more slowly
than Adaboost. This can be due to 1) less and less exampledfacéed by training at
deeper nodes, and 2) attempting to decrease the expeaedees not necessarily affect
the true error. The bottom-left curves show how the error galigation dataset decreases
with the number of training rounds. These curves show thatgéneralization error of
Adatree 2 is much better than that of Adatree 1 and is neadyad as that of Adaboost.

The bottom-right curves of Figure 2 plot the error againstitiiean computation cost of
each classifier. These curves are parameterized by the mahtraining rounds. In the

case of Adaboost, the computation cost coincides with tinga®u of training rounds, while

it corresponds to the mean depth reached by input given tdda¢ree classifiers. These
curves show that the computation cost of Adatree 2 is nearlpwa as that of Adatree 1
and that, at the bottom of the curve it has a much lower contipataost than Adaboost,
while achieving similar performance.



6 Conclusions and ongoing work

We have proposed a method to grow a smoothed decision thasseeaddress effectively
the problem of over-fitting in decision trees. Moreover, greposed method is closely
related to Adaboost, for which many theoretical resultstgsi, 20].

Theoretical results are still needed to show that Adatrérilig a boosting algorithm (i.e.
that it decreases the training error to zero under some gatgms on the weak learners),
and to guide the choice of a transition probability functids, n). Other issues for future
research include the choice of a splitting nedind the generalization to real-valued weak
classifiers.

We should in brief start benchmarking Adatree 2 on face dietreproblems.
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A Update rules that don’t work

Exercise: show that, with the weight update rule

Ds (n) = _D‘§ (n) eﬁséhg(Xn)e—ynasé/Zs’

i.e. q(s,n) = e P:5h:(Xn) the choice of3, that minimizes the expected classifying error
is Bs = +oo. This is the Adatreel update rule, which discard entirebnegles that do not
reach branch during training.



