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Abstract

We extend the framework of Adaboost so that it builds a smoothed deci-
sion tree rather than a neural network. The proposed method,“Adatree
2”, is derived from the assumption of a probabilistic observation model.
It avoids the problem of over-fitting that appears in other tree-growing
methods by reweighing the training examples, rather than splitting the
training dataset at each node. It differs from Adaboost by steering the
input data towards weak classifiers that are “tuned” to the conditional
probability determined by the output of previously evaluated classifiers.
As a consequence, Adatree 2 enjoys a lower computation cost than Ad-
aboost. After defining this method, we present some early experimental
results and identify some issues left open for future research.

1 Boosting and decision trees

Boosting [1, 2] refers to methods to build weighed combinations of “weak classifiers”. At
each training round, a weak classifier is added to the existing combination. These meth-
ods reduce the classification error on a training dataset at ageometric rate and have been
shown to have good properties [3]. They are known to often notoverfit and generalize well
even when training is continued way beyond perfect classification of the training dataset.
However, the computation cost of a boosted classifier increases linearly with the number of
training rounds, so that, in computation-sensitive situations, some adaptations [4, 5, 6, 7, 8]
are done to benefit from the good properties of boosting at a reasonable computation cost.

It has been noted [9] that decision tree-growing can also be viewed as a boosting mecha-
nism, in the sense that the training error can be made to decrease geometrically. However,
decision trees are notorious for over-fitting [10, Ch. 3.7] and tree “pruning”, “shrinking”
[11, cited by [12]] and “smoothing” [11, 13] are techniques developed to address this prob-
lem. Even then, over-fitting remains and decision trees havebeen combined by boosting to
improve the generalization ability.

The over-fitting of decision trees can be attributed to the fact that each node is determined
by only the examples that reach it during training. Consequently, deeper nodes are built
from dwindling training sets that are less and less representative of the general population.

∗This is a very slightly modified version of an article submitted to NIPS 2004.



Table 1: Training and classification processes, of Adaboost, decision trees and Adatree 2.

Classification Training

Adaboost
• All classifiers are evaluated.
• Output is linear combination

of all classifiers.

• Each classifier is trained
with all examples, appropri-
ately weighed.

Adatree 2

• Only weak classifiers on
path of input are evaluated.

• Output is linear combination
of evaluated classifiers.

• Each classifier is trained
with all examples, appropri-
ately weighed.

Decision
Tree

• Only weak classifiers on
path of input are evaluated.

• Output is that of last classi-
fier or (smoothed trees) a lin-
ear combination of evaluated
classifiers.

• Each classifier is trained
with the fraction of examples
that reaches it.

The proposed method, “Adatree 2” differs in that respect by diminishing the training weight
of examples rather than discarding them altogether.

This re-weighing scheme is derived by assuming a probabilistic observation model that
will be introduced in Section 3. Given the observation model, we derive Adatree 2 by
minimizing the expected classification error on the training dataset, in a similar manner to
the minimization of the classification error in Adaboost.

In Section 4, we will show that different assumptions on the observation model yield vari-
ants of Adatree 2 that are equivalent to Adaboost or to our previous method [14], which we
shall call “Adatree 1” in the sequel. Table 1 compares the training and classification stages
of Adaboost, decision trees and Adatree 2. This section alsostates the main problem that
we leave open for future study, namely the choice of an observation model.

Section 5 presents some preliminary experimental results that suggest that Adatree 2 has
a practical potential : its generalization ability appear less good than that of Adaboost
while improving over Adatree 1. Also, Adatree 2 improves over Adaboost in terms of
computation cost. Finally, some concluding notes are givenin Section 6.

2 Classifier model

We consider classifiers which are weighed sums of weak classifiershs () :

H (X) = Sgn





T (X)
∑

t=1

αs(t,X)hs(t,X) (X)



 , (1)

wherehs(t,X) (X) ∈ {−1, 1} ands (t, X) is the index of thetth nodes reached in the
decision tree by inputX . For example, the root node iss (1, X) = ∅, s (2, X) = (+) if
h∅ (X) = +1, s (3, X) = (+,−) if furthermoreh+ (X) = −1 etc. The weightsαs(t,X)

are set during training, as detailed in Section 4.



Algorithm 1 Adatree 2

Input Training examples(X1, y1) , . . . , (XN , yN ), original weightsD∅ (1) , . . . , D∅ (N),
target error rate and a family of weak classifiers.

Initialization Initialize the set of leaves to{∅}.

While stopping condition not met

1. Choose a leaf̄s.

2. Train a weak learnerhs̄ (X) using the p.d.fDs̄ (n) on the training set.

3. For each descendant leafs ∈ {(s̄, +) , (s̄,−)} choose weightsαs and probabilities

q (s, n) = P {hs̄ (On (ω)) = ṡ | yn, hs̄ (Xn) , On (ω) reaches̄s} ,

whereṡ is the last element (head) of s and may be+ or−.

4. Define sample weights at each descendant leafs :

Ds (n) = Ds̄ (n) q (s, n) e−ynαsṡ/Zs,

whereZs normalizes theDs (n) so that they sum up to one.

5. Split the old leaf̄s into the new leaves(s̄, +) and(s̄,−).

Final classifier

Define

h (X) =

T (X)
∑

t=1

α (t, X)h (t, X) ,

whereα (t, X) = αs(t+1,X) , h (t, X) = hs(t,X) (X) and thes (t, X) are defined recur-
sively by

s (1, X) = ∅
s (t + 1, X) =

(

s (t, X) , Sgn
(

hs(t,X) (X)
))

if hs(t,X) is defined.
undefined otherwise.

T (X) is the largest number for whichs (t + 1, X) is defined.

Note thatH (X) only depends on the leaf that is reached byX . If l is that leaf,

H (X) = Sgn





∑

∅<s≤l

αsṡ





∆
= Hl,

where the sum is taken over all nodess between the leafl (inclusive) and the root∅ (exclu-
sive). Throughout this paper, we will callṡ ∈ {−1, 1} the last element (head) of a nodes
ands̄ all its previous elements (tail). Thus, one writess = (s̄, ṡ).

The computational model in Eq. (1) can represent that of any decision tree : a smoothed
decision tree [13] will have non-zero coefficientsαs for non-leaf nodess, while a classical
decision tree such as ID3 or C.45 [15] will haveαs 6= 0 only if s is a leaf.

This computational model also encompasses the boosting algorithms : in e.g. Adaboost [2],
all classifiershs () at a given tree depth are equal, with weightsαs being either all equal
[2, Sec 3] or depending only on whethers is a left- or a right- child [2, Sec. 4][16].



������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

Xn
()hOn()nω

({+1})O
−1

O
−1
n ({−1,1})

h
−1

{    =1}y
��
��
��

��
��
��

ClassificationsEvents Observations

−1

Legend:

)( Positively classified events

Ω

Ω

nPre−image of observation

Positive events

All events

h(
X

  )
 =

 s
n

.
fo

r 
q(

s,
n)

Adatree 1

Adatree 2

V

Adaboost

 0.2

 0.4

 0.6

 0.8

 0

 1

 0  0.2  0.4  0.6  0.8  1

Figure 1: Left: Probabilistic observation model.Right: Possible choices ofq (s, n) =
P {h (On (ω) = hs̄ (Xn) | ...)} as a function ofV = Vs̄ (hs̄ (Xn) , yn)- see Sec. 4.1.

3 Probabilistic learning model

With similar intentions as in Logistic Regression [17, 3] and boosting with prior knowledge
[18], we assume a probabilistic observation model. Contrarily to [18], we do not consider
that the classyn of an inputXn is stochastic, but instead thatXn is the observation of
a random variableOn (ω) defined on a probability space(Ω,O, P ) (Figure 1, left). The
random variablesOn are themselves assumed to be i.i.d. samples from the class they
represent. We will be considering with particular attention the conditional probabilities
thath (On (ω)) takes a particular value, i.e.

P {h (On (ω)) = h (Xn) | yn, h (Xn)}
for probabilities conditioned on the classyn and on the observed value ofh (Xn) (which
may thus differ fromh (On (ω))).

How this probability is estimated is important because it determines the behavior of the
learning algorithm (see Algorithm 1). Moreover, one is “free” to estimate it as one wants,
by adopting different assumptions and we will discuss in thenext section the consequences
of various possible choices.

Given a probabilistic observation model, the natural goal during training is to minimize the
expected classification error of an observation:

E (Loss(H (X) , y)) ≃
∑

n=1

D∅ (n)E (Loss(H (On (ω)) , yn))
∆
= L, (2)

whereE () is the expectation operator,D∅ (n) is the probability of an observation being
drawn fromOn (ω)1 and Loss(H (X) , y) is one ifH (X) 6= y and zero otherwise - we will
write Loss(H (X) , y) = [[H (X) 6= y]], where[[.]] is the indicator function of a predicate.
Given the nature ofH(), Eq. (2) can be written

L =
∑

n

D∅ (n)
∑

l leaf

p (l, On (ω)) [[Hl 6= yn]], (3)

wherep (l, On (ω)) is the probability that the inputOn (ω) reaches the leafl. Pushing
realism slightly aside, we adopt a practical approach and assume that

p (l, On (ω)) =
∏

∅<s≤l

q (s, n) (4)

where the product is over all non-root nodess at or belowl and

q (s, n) = P {hs̄ (On (ω)) = ṡ | yn, hs̄ (Xn) , On (ω) reachess}
1D∅ (n) = 1/N if the On arei.i.d..



is the “transition” probability thaths̄ (On (ω)) = ṡ, knowingyn, hs̄ (Xn) and thatOn (ω)
reaches the nodes. “On (ω) reachess” is the event defined by the predicate∀u s.t.∅ < u ≤
s, hū (On (ω)) = u̇. What Eq. (4) -the independence of the successive weak classifiers-
lacks in theoretical justification is regained in convenience.

This assumption allows to bring in the framework of boosting, as developed in [19], to
bound the expected loss

L ≤
∑

n

D∅ (n)
∑

l leaf
p (l, On (ω)) e

−
(
∑

∅<s≤l
−αsṡ

)

yn

=
∑

l leaf

∑

n

D∅ (n)
∏

∅<s≤l

q (s, n) e−αsṡyn

=
∑

l leaf

∑

n

D∅ (n)
∏

∅<s≤l

Ds (n)

Ds̄ (n)
Zs

=
∑

l leaf

∏

∅<s≤l

Zs.

Given this bound, one is justified to choose the value ofαs that minimizeZs during
training, so as to greedily decreaseL. SinceZs =

∑

n Ds̄ (n) q (s, n) e−αsṡyn , it is
easy to see that the optimalαs is e2αs = As/Bs, whereAs =

∑

yn=ṡ Ds̄ (n) q (s, n),
Bs =

∑

yn=−ṡ Ds̄ (n) q (s, n) and
∑

yn=ṡ is the sum over all indicesn s.t. yn = ṡ. At the
optimum,Zs = 2

√
AsBs.

4 Design choices in Adatree 2

In this section, we discuss the choices that remain to be made, namely that of a probability
model forq (s, n) and of a splitting nodes in step 1 of Algorithm 1.

4.1 Choice of the transition probability q (s, n)

We now consider the consequences of possible choices ofq (s, n). First note that, for each
s̄, q ((s̄, +) , m) andq ((s̄, +) , n) need only be defined for somem, n such thatym = 1
andyn = −1. This is becauseq ((s̄,−) , m) andq ((s̄,−) , n) are given by the relation
q ((s̄, +) , n) + q ((s̄,−) , n) = 1 and allq ((s̄, +) , m′) are equal to eitherq ((s̄,−) , m) or
q ((s̄,−) , n).

4.1.1 Constantnon-deterministic (Adaboost)

A simple choice isq (s, n)
∆
= 1/2, results in the same training weights on both child

branches branches of any nodes̄. That is, one hasD(s̄,+) (n) = D(s̄,−) (n) for all s̄. As a
consequence, the same weak classifier will be trained on bothchildren nodes :h(s̄,+) () =
h(s̄,−) (). Furthermore, assuming a balanced decision tree of depthT , the classifierH (X)

is equal to a boosted classifierG (X)
∆
= Sgn

(

∑T

t=1 αtht (X)
)

, whereα1
∆
= α+, α2

∆
=

α++, . . . andh1 ()
∆
= h∅ () , h2 ()

∆
= h+ () , . . . .

4.1.2 Constant deterministic (Adatree 1)

Another simple choice isq (s, n)
∆
= [[ṡ = hs̄ (Xn)]], i.e. ∀ω ∈ Ω, hs̄ (On (ω)) = hs̄ (Xn),

which corresponds to a deterministic observation model. Asa result, the training weight



Ds+ (n) (resp.Ds− (n)) of all examplesXn such thaths (Xn) = −1 (resp.hs (Xn) = 1)
is zero. This is thus equivalent to splitting the training set at each node, as in typical
decision tree growing methods. The consequences of this choice, associated with a greedy
cost minimization strategy, were explored in our previous work [14] where it was shown
that it results in overfitting.

4.1.3 Uniform

Another natural choice is to setq (s, n) to the proportion of training examples that verify
hs̄ (Xn) = ṡ :

q (s, n) =

∑N

m=1 D∅ (m) p (s̄, m) [[ym = yn]][[hs̄ (Xm) = ṡ]]
∑N

m=1 D∅ (m) p (s̄, m) [[ym = yn]]

∆
= Vs̄ (ṡ, yn) . (5)

Note thatq (s, n) only depends onHs̄ (Xn) through a single term in the numerator.

Although this choice may at first seem compelling, it impliesthat Ds (n) =
Ds̄ (n) /

∑

ym=yn
Ds̄ (m), which doesnot increase the weight of misclassified examples.

Running Adatree 2 with this choice ofq (s, n) does not result in a decrease of the classifi-
cation error on the training data.

4.1.4 Non-trivial transition probabilities

We are thus compelled to find transition probabilities that avoid the excesses of the choices
proposed above. In this paper, we use a functionq (s, n) that depend onhs̄ (Xn) and
Vs̄ (ṡ, yn) (Eq. (5)). The probability thaths̄ (On (ω)) = hs̄ (Xn) is assumed to be :

q ((s̄, hs̄ (Xn)) , n) =
1

2

(

1 +
√

Vs̄ (hs̄ (Xn) , yn)
)

. (6)

This choice (Figure 1, right) ensures thaths̄ (On (ω)) = hs̄ (Xn) is always more likely
than the contrary, so that the path in the tree followed by an example during training is
always the most likely path for this example. While Eq. (6) seems adequate, the search for
functionsq (s, n), preferably that can be shown to yield boosting algorithms,remains open.

4.2 Choice of a splitting criterion

In this section, we discuss the criterion used to select the nodes at which a split in the
decision tree should be done. In the decision tree literature, it is generally admitted that it
is preferable to split according to an entropy gain measure [10] or according to Kearns and
Mansour´s [9] criterion, rather than according to a classification-cost decrease criterion.
Because, in the present work, (a bound on) the expected classification is minimized, a
natural question is whether it is best to split a leaf to minimize the expected value of the
criterion or its observed value.

One should note that minimizing the observed criterion is feasible only until its value has
reached its minimum, e.g. zero error. One is thus in the usualsituation of classification
trees in which no training is possible once the data is perfectly classified. On the other
hand, minimizing the expected criterion does not necessarily decrease the actual (empirical)
classification error.

In the present work, we split the node with the highest expected error (zero look-ahead). An
alternative could have been to split whichever node yields the greatest decrease in expected
error (one look-ahead).
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Figure 2: Top-Left: Example dataset.Top-Right: Error during training.Bottom-Left:
Error vs. number of training roundsBottom-Right: Error vs. computation cost.

5 Experimental results

This section compares experimentally Adatree 2 with Adaboost [2, Sec. 4] and Adatree 1
[14], using a 2D classification problem.

We consider datasets as shown in Figure 2 (top-left), where positive (resp. negative) exam-
ples are uniformly distributed in one of nine circles (resp.in the remaining space). Each
class has 200 points.

The class of weak classifiers is the set of signs of 2D affine functions. Adatree 1 is trained
until the classification error is zero (it cannot be trained further), while Adaboost and Ada-
tree 2 are trained for 400 rounds. All weak classifiers are selected according to Kearns and
Mansour´s criterion [9].

Figure 2 (top-right) shows that Adatree 2 decreases the error during training more slowly
than Adaboost. This can be due to 1) less and less examples areaffected by training at
deeper nodes, and 2) attempting to decrease the expected error does not necessarily affect
the true error. The bottom-left curves show how the error on avalidation dataset decreases
with the number of training rounds. These curves show that the generalization error of
Adatree 2 is much better than that of Adatree 1 and is nearly asgood as that of Adaboost.

The bottom-right curves of Figure 2 plot the error against the mean computation cost of
each classifier. These curves are parameterized by the number of training rounds. In the
case of Adaboost, the computation cost coincides with the number of training rounds, while
it corresponds to the mean depth reached by input given to theAdatree classifiers. These
curves show that the computation cost of Adatree 2 is nearly as low as that of Adatree 1
and that, at the bottom of the curve it has a much lower computation cost than Adaboost,
while achieving similar performance.



6 Conclusions and ongoing work

We have proposed a method to grow a smoothed decision that seems to address effectively
the problem of over-fitting in decision trees. Moreover, theproposed method is closely
related to Adaboost, for which many theoretical results exist [3, 20].

Theoretical results are still needed to show that Adatree istruly a boosting algorithm (i.e.
that it decreases the training error to zero under some assumptions on the weak learners),
and to guide the choice of a transition probability functionq (s, n). Other issues for future
research include the choice of a splitting nodes and the generalization to real-valued weak
classifiers.

We should in brief start benchmarking Adatree 2 on face detection problems.
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A Update rules that don´t work

Exercise: show that, with the weight update rule

Ds (n) = Ds̄ (n) eβsṡhs̄(Xn)e−ynαsṡ/Zs,

i.e. q (s, n) = e−βsṡhs̄(Xn), the choice ofβs that minimizes the expected classifying error
is βs = +∞. This is the Adatree1 update rule, which discard entirely examples that do not
reach branchs during training.


